Subscribe to RSS
DOI: 10.1055/s-2006-939692
Selenoxides as Catalysts for Epoxidation and Baeyer-Villiger Oxidation with Hydrogen Peroxide
Publication History
Publication Date:
24 April 2006 (online)
Abstract
Aryl benzyl selenoxides are catalysts for the epoxidation of various olefinic substrates and the Baeyer-Villiger oxidation of aldehydes and ketones with H2O2 in CH2Cl2 at 2.5 mol% catalyst. Benzyl 3,5-bis(trifluoromethyl)phenyl selenoxide (4) was the most effective catalyst while 2-(dimethylamino)phenyl benzyl selenoxide was the least. Mono-, di-, and trisubstituted alkenes were epoxidized and adamantanone, cyclohexanone, and 3,4,5-trimethoxybenzaldehyde underwent Baeyer-Villiger oxidation using 4 and H2O2. Competition studies showed that epoxidation reactions were faster than Baeyer-Villiger oxidations although the selectivity varied only from 1.3:1 to 4.6:1.
Key words
catalysis - epoxidations - esters - oxidations - selenoxide
-
1a
Allan GG.Neogi AN. J. Catal. 1970, 16: 197 -
1b
Venturello C.Alneri E.Ricci M. J. Org. Chem. 1983, 48: 3831 -
1c
Ishii Y.Yamawaki K.Ura T.Yamada H.Yoshida T.Ogawa M. J. Org. Chem. 1988, 53: 3587 -
1d
Kaczmarczyk E.Janus E.Milchert E. J. Mol. Catal. A: Chem. 2005, 235: 52 -
2a
Herrmann WA.Fischer RW.Scherer W.Rauch MU. Angew. Chem., Int. Ed. Engl. 1993, 32: 1157 -
2b
Rudolph J.Reddy KL.Chiang JP.Sharpless KB. J. Am. Chem. Soc. 1997, 119: 6189 -
2c
Li M.Espenson JH. J. Mol. Catal. A: Chem. 2004, 208: 123 -
3a
Renaud JP.Battioni P.Bartoli JF.Mansuy D. J. Chem. Soc., Chem. Commun. 1985, 888 -
3b
Neumann R.Gara M. J. Am. Chem. Soc. 1995, 117: 5066 -
3c
Rebelo SLH.Pereira MM.Simoes MMQ.Neves MGPMS.Cavaleiro JAS. J. Catal. 2005, 234: 76 -
4a
Astin S.Newman ACC.Riley HL. J. Chem. Soc. 1933, 391 -
4b
Schaefer JP.Horvath B.Klein HP. J. Org. Chem. 1968, 33: 2647 -
5a
Grieco PA.Yokoyama Y.Gilman S.Nishizawa M. J. Org. Chem. 1977, 42: 2034 -
5b
Sharpless KB.Hori T. J. Org. Chem. 1978, 43: 1689 -
5c
Ten Brink GJ.Fernandes BCM.Van Vliet MCA.Arends IWCE.Sheldon RA. J. Chem. Soc., Perkin Trans. 1 2001, 224 - 6
Syper L.Mlochowski J. Tetrahedron 1987, 43: 207 - 7 For a general review, see:
Lane BS.Burgess K. Chem. Rev. 2003, 103: 2457 -
8a
Ten Brink GJ.Vis J.-M.Arends IWCE.Sheldon RA. J. Org Chem. 2001, 66: 2429 -
8b
Ten Brink GJ.Vis J.-M.Arends IWCE.Sheldon RA. Tetrahedron 2002, 3977 - For general reviews, see:
-
9a
Renz M.Meunier B. Eur. J. Org. Chem. 1999, 737 -
9b
Krow GR. Org. React. 1993, 43: 251 - 10
Goodman MA.Detty MR. Organometallics 2004, 23: 3016 -
11a
Walter R.Roy J. J. Org. Chem. 1970, 36: 2561 -
11b
Jones DN.Mundy D.Whitehouse RD. J. Chem. Soc., Chem. Commun. 1970, 86 -
11c
Sharpless KB.Young MW.Lauer RF. Tetrahedron Lett. 1973, 1979 -
11d
Reich HJ.Reich IL.Renga JM. J. Am. Chem. Soc. 1973, 95: 5813 - 12
Krief A.Lonez F. Tetrahedron Lett. 2002, 43: 6255 - 13
Detty MR. J. Org. Chem. 1980, 45: 274 - 18
Detty MR.Friedman AE.Oseroff A. J. Org. Chem. 1994, 59: 8245 -
19a
Detty MR.Friedman AE.McMillan M. Organometallics 1994, 13: 3338 -
19b
Detty MR.Friedman AE.McMillan M. Organometallics 1995, 14: 1442 - 20
You Y.Ahsan K.Detty MR. J. Am. Chem. Soc. 2003, 125: 4918 - 21
Detty MR.Williams AJ.Hewitt JM.McMillan M. Organometallics 1995, 14: 5258
References and Notes
Hydrogen peroxide (8.8 M, 0.225 mL, 2.0 mmol) was added to 1.0 mmol of cis-cyclooctene and 0.05 mmol of selenoxide in 2 mL of CH2Cl2. The progress of the reaction at 296 ± 1 K was monitored by determining the cis-cylooctene:6 ratio using 1H NMR spectroscopy from aliquots withdrawn from the reaction mixtures.
15Selenoxide 4 (0.05 mmol, 2.5 mol%), alkene (2 mmol) or carbonyl compound (2 mmol), and H2O2 (8.8 M, 0.45 mL, 4.0 mmol) were stirred in CH2Cl2 (2 mL) at 296 K. The progress of reaction was followed by 1H NMR spectroscopy of aliquots withdrawn at various time points. Upon completion, reaction mixtures were poured into 10 mL of H2O and products were extracted with CH2Cl2. Products were purified via chromatography of SiO2 eluted with CH2Cl2.
16Compound 6: 1H NMR (400 MHz, CDCl3): δ = 2.91 (d, 2 H, J = 8 Hz), 2.15 (d, 2 H, J = 11.6 Hz), 1.27-1.60 (m, 10 H). 13C NMR (125 MHz, CDCl3): δ = 55.35, 26.58, 26.37, 25.59.
Compound 7: 1H NMR (400 MHz, CDCl3): δ = 7.24-7.34 (m, 5 H), 3.57 (s, 1 H), 3.04 (q, 1 H, J = 5.0 Hz), 1.44 (d, 3 H, J = 5.0 Hz). 13C NMR (125 MHz, CDCl3): δ = 137.60, 128.30, 127.90, 125.40, 59.42, 58.93, 17.80.
Compound 8: 1H NMR (500 MHz, CDCl3): δ = 2.75 (t, 1 H, J = 7.5 Hz), 1.24-1.52 (m, 12 H), 0.91 (t, 3 H, J = 6.5 Hz). 13C NMR (125 MHz, CDCl3): δ = 64.58, 58.48, 28.42, 28.25, 24.61, 22.34, 18.42, 13.78.
Compound 9: 1H NMR (500 MHz, CDCl3): δ = 1.84-1.91 (m, 2 H), 1.63-1.69 (m, 2 H), 1.38-1.44 (m, 2 H), 1.30 (s, 3 H), 1.16-1.26 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 59.15, 32.57, 29.40, 24.26, 23.52, 19.56, 19.18.
Compound 10: 1H NMR (500 MHz, CDCl3): δ = 2.66 (t, 2 H, J = 5.0 Hz), 1.35-1.54 (m, 12 H), 0.93 (t, 6 H, J = 7.0 Hz). 13C NMR (125 MHz, CDCl3): δ = 58.53, 31.78, 28.12, 22.46, 13.92.
Compound 13: 1H NMR (400 MHz, CDCl3): δ = 8.17 (s, 1 H), 6.28 (s, 2 H), 3.71 (s, 9 H). 13C NMR (125 MHz, CDCl3): δ = 159.20, 153.20, 145.60, 135.70, 98.32, 60.36, 55.72.
Compound 14: 1H NMR (400 MHz, CDCl3): δ = 4.25 (t, 2 H, J = 4.6 Hz), 2.66 (t, 2 H, J = 5.2 Hz), 1.59-1.66 (m, 4 H), 1.40-1.50 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 175.90, 69.22, 34.66, 29.18, 27.42, 25.40.
Compound 15: 1H NMR (400 MHz, CDCl3): δ = 4.40 (t, 1 H, J = 3.0 Hz), 2.97 (t, 1 H, J = 5.4 Hz), 1.67-2.04 (m, 12 H). 13C NMR (75 MHz, CDCl3): δ = 178.3, 72.61, 40.71, 35.15, 33.09, 30.35, 25.23.
H2O2 (8.8 M, 0.225 mL, 2.0 mmol) was added to 1.0 mmol of 12 and 0.05 mmol of selenoxide (5.0 mol% relative to 12) in 2 mL CH2Cl2.
22H2O2 (8.8 M, 0.225 mL, 2.0 mmol) or MCPBA (2.0 mmol, no catalyst), 2.0 mmol of 1-methylcyclohexene, 2.0 mmol of aldehyde 12 or cyclohexanone, and 0.05 mmol of selenoxide were stirred in 2 mL of CDCl3. The reactions were stirred for 24 h and the product mixtures were examined directly by 1H NMR spectroscopy. In each reaction, the product/starting material ratio was approximately 1:1. Ratios are the average of duplicate runs.