Subscribe to RSS
DOI: 10.1055/s-2006-939718
Macrocycles via Doebner Reaction Followed by Macrolactonization
Publication History
Publication Date:
22 May 2006 (online)
Abstract
The synthesis of 14 different macrocycles is reported. Upon reacting different formylphenoxyacetic acid derivatives with 5-aminopentanol and a diketo compound, eight different Doebner product intermediates were obtained. These intermediates were then subjected to cyclization by using polymer-bound carbodiimide to give macrolactones. Both the monomers and the dimers could be isolated and characterized. In some cases trimers could be seen from the HPLC-MS. The ratios and distribution of the different-sized rings are discussed.
Key words
macrocycles - multicomponent reactions - lactones - heterocycles - tandem reactions
- 1
McGuire JM.Bunch RL.Anderson RC.Boaz HE.Flynn EH.Powell HM.Smith JW. Antibiot. Chemother. 1952, 2: 281 - 2
Katz L.Ashley GW. Chem. Rev. 2005, 105: 499 - 3
Kino T.Hatanaka H.Hashimoto M.Nishiyama M.Goto T.Okuhara M.Kohsaka M.Aoki H.Imanaka H. J. Antibiot. (Tokyo) 1987, 40: 1249 - 4
Sehgal SN.Baker H.Vezina C. J. Antibiot. (Tokyo) 1975, 28: 727 - 5
Gold W.Stout HA.Pagano JF.Donovick R. Antibiot. Ann. 1955-1956, 579 - 6
Hazen EL.Brown R. Science 1950, 112: 423 - 7
Höfle G.Bedorf N.Steinmetz H.Schomburg D.Gerth K.Reichenbach H. Angew. Chem., Int. Ed. Engl. 1996, 35: 1567 - 8
Li JY.Strobel G.Harper J.Lobkovsky E.Clardy J. Org. Lett. 2000, 2: 767 - 9
Stickings CE. Biochem. J. 1959, 72: 332 -
10a
Ito S.Hirata Y. Tetrahedron Lett. 1972, 13: 1181 -
10b
Ito S.Hirata Y. Tetrahedron Lett. 1972, 13: 1185 -
10c
Ito S.Hirata Y. Tetrahedron Lett. 1972, 13: 2557 - 11
Jomon K.Ajisaka M.Sakai H. J. Antibiot. 1972, 25: 271 -
12a
Bughin C.Zhao G.Bienaymè H.Zhu J. Chem. Eur. J. 2006, 12: 1174 -
12b
Cristau P.Vors J.-P.Zhu J. Org. Lett. 2001, 3: 4079 -
12c
Beck B.Larbig G.Mejat B.Magnin-Lachaux M.Picard A.Herdtweck E.Dömling A. Org. Lett. 2003, 5: 1047 -
13a
Döbner O. Ber. Dtsch. Chem. Ges. 1887, 20: 277 -
13b
Gein VL.Popov AV.Andeichikov YS. Zh. Org. Khim. 1992, 28: 2774 -
13c
Andeichikov YS.Gein VL.Anikina IN. Zh. Org. Khim. 1988, 24: 875 -
13d
Andeichikov YS.Gein VL.Ivanenko OI.Maslivets AN. Zh. Org. Khim. 1986, 22: 2208 -
13e
Schiff R.Bertini C. Ber. Dtsch. Chem. Ges. 1897, 30: 601 -
13f
Dohrn M.Thiele A. Ber. Dtsch. Chem. Ges. B 1931, 64: 2863 -
15a
Buckman BO.Morrissey MM.Mohan R. Tetrahedron Lett. 1998, 39: 1487 -
15b
Keck GE.Sanchez C.Wagner CA. Tetrahedron Lett. 2000, 41: 8673 -
15c
Neisses B.Steglich W. Angew. Chem., Int. Ed. Engl. 1978, 17: 522 - 17
Granik VG. Russ. Chem. Rev. 1982, 51: 119
References and Notes
Amine (2 mmol) and aldehyde (2 mmol) were dissolved in 3 mL of a 1:1 mixture of CH2Cl2 and EtOH. After 30 min stirring at r.t. pyruvic acid derivative (2 mmol) was added. The mixture was stirred for 16 h. The solvent was removed and the remainder taken up in Et2O for solidifying. Compounds 4, 5 and 6 could be used for the next step without purification. All other compounds were purified via preparative HPLC (column Grom-Sil 120 ODS-5, 10 × 4 cm, 10 µm, flow 50 mL/min, gradient 20-100% A in 15 min, solvent A = MeOH + 0.5% AcOH, solvent B = H2O + 0.5% AcOH). Yields of 1-8 are given in Table [1] .
16Compound 1 (250.8 mg, 0.6 mmol) was dissolved in 5 mL of anhydrous CH2Cl2 together with N,N-dimethylamino-pyridine (15.9 mg, 0.13 mmol). Then, N-cyclohexyl-N′-methyl polystyrene (Novabiochem, 750 mg, 1.2 mmol) was added and the mixture agitated overnight at r.t. Resin was filtered off and thoroughly washed with CH2Cl2. The combined solvents were evaporated and the remainder was subjected to preparative HPLC (column Waters SunFire Prep C18 OBD, 19 × 50 mm, 5 µm, flow 30 mL/min, gradient 20-90% A in 15 min, solvent A = MeOH + 0.03% formic acid, solvent B = H2O + 0.03% formic acid). Yield of 9: 60 mg (25%), 17: 28 mg (5.8%), 25: 6 mg (0.8%).
Compound 9: 1H NMR (400 MHz, CDCl3): δ = 1.05 (9 H, s, CH3), 1.10-1.80 (6 H, m, CH2CH2CH2), 2.79-2.88 (1 H, t, CH of CH2, J = 13.3 Hz), 3.51-3.61 (1 H, t, CH′ of CH2, J = 13.3 Hz), 4.02-4.14 (2 H, m, CH2), 4.76-4.82 (1 H, d, CH of CH2, J = 17.2 Hz), 4.92-4.98 (1 H, d, CH′ of CH2, J = 17.2 Hz), 6.06 (1 H, s, CH), 6.76-6.88 (3 H, m, Harom), 7.16-7.22 (1 H, d, J = 8.6 Hz, Harom). 13C NMR (100 MHz, CDCl3): δ = 24.3, 25.4, 25.8, 26.1, 40.5, 43.0, 54.2, 64.4, 67.7, 110.2, 118.1, 122.0, 124.8, 127.0, 129.8, 154.5, 155.5, 164.5, 168.9, 202.5.
Compound 17: 1H NMR (400 MHz, DMSO-d
6): δ = 1.10 (18 H, s, CH3), 1.14-1.68 (12 H, m, 2 × CH2CH2CH2), 3.30-3.54 (4 H, m, 2 × CH2), 4.06-4.18 (4 H, m, 2 × CH2), 4.83-4.93 (4 H, m, 2 × CH2), 5.83 (2 H, s, 2 × CH), 6.70-6.78 (2 H, m, Harom), 6.85-6.92 (2 H, m, Harom), 6.95-7.03 (2 H, m, Harom), 7.17-7.26 (2 H, m, Harom). 13C NMR (100 MHz, DMSO-d
6): δ = 22.4, 24.6, 25.3, 27.0, 40.1, 42.5, 54.1, 64.3, 67.3, 110.0, 118.5, 122.1, 125.2, 127.4, 129.9, 156.0, 156.3, 165.0, 168.5, 202.7.
Compound 25: No NMR spectra could be recorded due to lack of substance.