References and Notes
<A NAME="RG08006ST-1">1</A>
McGuire JM.
Bunch RL.
Anderson RC.
Boaz HE.
Flynn EH.
Powell HM.
Smith JW.
Antibiot. Chemother.
1952,
2:
281
<A NAME="RG08006ST-2">2</A>
Katz L.
Ashley GW.
Chem. Rev.
2005,
105:
499
<A NAME="RG08006ST-3">3</A>
Kino T.
Hatanaka H.
Hashimoto M.
Nishiyama M.
Goto T.
Okuhara M.
Kohsaka M.
Aoki H.
Imanaka H.
J. Antibiot. (Tokyo)
1987,
40:
1249
<A NAME="RG08006ST-4">4</A>
Sehgal SN.
Baker H.
Vezina C.
J. Antibiot. (Tokyo)
1975,
28:
727
<A NAME="RG08006ST-5">5</A>
Gold W.
Stout HA.
Pagano JF.
Donovick R.
Antibiot. Ann.
1955-1956,
579
<A NAME="RG08006ST-6">6</A>
Hazen EL.
Brown R.
Science
1950,
112:
423
<A NAME="RG08006ST-7">7</A>
Höfle G.
Bedorf N.
Steinmetz H.
Schomburg D.
Gerth K.
Reichenbach H.
Angew. Chem., Int. Ed. Engl.
1996,
35:
1567
<A NAME="RG08006ST-8">8</A>
Li JY.
Strobel G.
Harper J.
Lobkovsky E.
Clardy J.
Org. Lett.
2000,
2:
767
<A NAME="RG08006ST-9">9</A>
Stickings CE.
Biochem. J.
1959,
72:
332
<A NAME="RG08006ST-10A">10a</A>
Ito S.
Hirata Y.
Tetrahedron Lett.
1972,
13:
1181
<A NAME="RG08006ST-10B">10b</A>
Ito S.
Hirata Y.
Tetrahedron Lett.
1972,
13:
1185
<A NAME="RG08006ST-10C">10c</A>
Ito S.
Hirata Y.
Tetrahedron Lett.
1972,
13:
2557
<A NAME="RG08006ST-11">11</A>
Jomon K.
Ajisaka M.
Sakai H.
J. Antibiot.
1972,
25:
271
<A NAME="RG08006ST-12A">12a</A>
Bughin C.
Zhao G.
Bienaymè H.
Zhu J.
Chem. Eur. J.
2006,
12:
1174
<A NAME="RG08006ST-12B">12b</A>
Cristau P.
Vors J.-P.
Zhu J.
Org. Lett.
2001,
3:
4079
<A NAME="RG08006ST-12C">12c</A>
Beck B.
Larbig G.
Mejat B.
Magnin-Lachaux M.
Picard A.
Herdtweck E.
Dömling A.
Org. Lett.
2003,
5:
1047
<A NAME="RG08006ST-13A">13a</A>
Döbner O.
Ber. Dtsch. Chem. Ges.
1887,
20:
277
<A NAME="RG08006ST-13B">13b</A>
Gein VL.
Popov AV.
Andeichikov YS.
Zh. Org. Khim.
1992,
28:
2774
<A NAME="RG08006ST-13C">13c</A>
Andeichikov YS.
Gein VL.
Anikina IN.
Zh. Org. Khim.
1988,
24:
875
<A NAME="RG08006ST-13D">13d</A>
Andeichikov YS.
Gein VL.
Ivanenko OI.
Maslivets AN.
Zh. Org. Khim.
1986,
22:
2208
<A NAME="RG08006ST-13E">13e</A>
Schiff R.
Bertini C.
Ber. Dtsch. Chem. Ges.
1897,
30:
601
<A NAME="RG08006ST-13F">13f</A>
Dohrn M.
Thiele A.
Ber. Dtsch. Chem. Ges. B
1931,
64:
2863
<A NAME="RG08006ST-14">14</A>
Amine (2 mmol) and aldehyde (2 mmol) were dissolved in 3 mL of a 1:1 mixture of CH2Cl2 and EtOH. After 30 min stirring at r.t. pyruvic acid derivative (2 mmol) was added.
The mixture was stirred for 16 h. The solvent was removed and the remainder taken
up in Et2O for solidifying. Compounds 4, 5 and 6 could be used for the next step without purification. All other compounds were purified
via preparative HPLC (column Grom-Sil 120 ODS-5, 10 × 4 cm, 10 µm, flow 50 mL/min,
gradient 20-100% A in 15 min, solvent A = MeOH + 0.5% AcOH, solvent B = H2O + 0.5% AcOH). Yields of 1-8 are given in Table
[1]
.
<A NAME="RG08006ST-15A">15a</A>
Buckman BO.
Morrissey MM.
Mohan R.
Tetrahedron Lett.
1998,
39:
1487
<A NAME="RG08006ST-15B">15b</A>
Keck GE.
Sanchez C.
Wagner CA.
Tetrahedron Lett.
2000,
41:
8673
<A NAME="RG08006ST-15C">15c</A>
Neisses B.
Steglich W.
Angew. Chem., Int. Ed. Engl.
1978,
17:
522
<A NAME="RG08006ST-16">16</A>
Compound 1 (250.8 mg, 0.6 mmol) was dissolved in 5 mL of anhydrous CH2Cl2 together with N,N-dimethylamino-pyridine (15.9 mg, 0.13 mmol). Then, N-cyclohexyl-N′-methyl polystyrene (Novabiochem, 750 mg, 1.2 mmol) was added and the mixture agitated
overnight at r.t. Resin was filtered off and thoroughly washed with CH2Cl2. The combined solvents were evaporated and the remainder was subjected to preparative
HPLC (column Waters SunFire Prep C18 OBD, 19 × 50 mm, 5 µm, flow 30 mL/min, gradient
20-90% A in 15 min, solvent A = MeOH + 0.03% formic acid, solvent B = H2O + 0.03% formic acid). Yield of 9: 60 mg (25%), 17: 28 mg (5.8%), 25: 6 mg (0.8%).
Compound 9: 1H NMR (400 MHz, CDCl3): δ = 1.05 (9 H, s, CH3), 1.10-1.80 (6 H, m, CH2CH2CH2), 2.79-2.88 (1 H, t, CH of CH2, J = 13.3 Hz), 3.51-3.61 (1 H, t, CH′ of CH2, J = 13.3 Hz), 4.02-4.14 (2 H, m, CH2), 4.76-4.82 (1 H, d, CH of CH2, J = 17.2 Hz), 4.92-4.98 (1 H, d, CH′ of CH2, J = 17.2 Hz), 6.06 (1 H, s, CH), 6.76-6.88 (3 H, m, Harom), 7.16-7.22 (1 H, d, J = 8.6 Hz, Harom). 13C NMR (100 MHz, CDCl3): δ = 24.3, 25.4, 25.8, 26.1, 40.5, 43.0, 54.2, 64.4, 67.7, 110.2, 118.1, 122.0,
124.8, 127.0, 129.8, 154.5, 155.5, 164.5, 168.9, 202.5.
Compound 17: 1H NMR (400 MHz, DMSO-d
6): δ = 1.10 (18 H, s, CH3), 1.14-1.68 (12 H, m, 2 × CH2CH2CH2), 3.30-3.54 (4 H, m, 2 × CH2), 4.06-4.18 (4 H, m, 2 × CH2), 4.83-4.93 (4 H, m, 2 × CH2), 5.83 (2 H, s, 2 × CH), 6.70-6.78 (2 H, m, Harom), 6.85-6.92 (2 H, m, Harom), 6.95-7.03 (2 H, m, Harom), 7.17-7.26 (2 H, m, Harom). 13C NMR (100 MHz, DMSO-d
6): δ = 22.4, 24.6, 25.3, 27.0, 40.1, 42.5, 54.1, 64.3, 67.3, 110.0, 118.5, 122.1,
125.2, 127.4, 129.9, 156.0, 156.3, 165.0, 168.5, 202.7.
Compound 25: No NMR spectra could be recorded due to lack of substance.
<A NAME="RG08006ST-17">17</A>
Granik VG.
Russ. Chem. Rev.
1982,
51:
119