References and Notes
Reviews:
1a
Nubbemeyer U.
Synthesis
2003,
961 ; and references cited therein
1b
Enders D.
Knopp M.
Schiffers R.
Tetrahedron: Asymmetry
1996,
7:
1847
1c
Frauenrath H.
Stereoselective Synthesis, In Houben-Weyl (Methods in Organic Chemistry)
Vol. E21d:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1995.
p.3301
2a
Schneider C.
Rehfeuter M.
Synlett
1996,
212
2b
Schneider C.
Rehfeuter M.
Tetrahedron
1997,
53:
133
2c
Schneider C.
Synlett
2001,
1079
For related work see:
2d
Black WC.
Giroux A.
Greidanus G.
Tetrahedron Lett.
1996,
37:
4471
2e
Tomooka K.
Nagasawa A.
Wei Y.
Nakai T.
Tetrahedron Lett.
1996,
37:
8899
3a
Evans DA.
Bartroli J.
Shi TL.
J. Am. Chem. Soc.
1981,
103:
2128
3b
Evans DA.
Sjogren EB.
Tetrahedron Lett.
1986,
27:
4957
4
Doering WvE.
Roth WR.
Tetrahedron
1962,
18:
67
For the application of the Cope products in organic synthesis see:
5a
Schneider C.
Synlett
1997,
815
5b
Schneider C.
Schuffenhauer A.
Eur. J. Org. Chem.
2000,
73
5c
Schneider C.
Börner C.
Synlett
1998,
652
5d
Schneider C.
Börner C.
Schuffenhauer A.
Eur. J. Org. Chem.
1999,
3353
5e
Schneider C.
Eur. J. Org. Chem.
1998,
1661
5f
Schneider C.
Rehfeuter M.
Tetrahedron Lett.
1998,
39:
9
5g
Schneider C.
Rehfeuter M.
Chem. Eur. J.
1999,
5:
2850
5h
Schneider C.
Reese O.
Angew. Chem. Int. Ed.
2000,
39:
2948 ; Angew. Chem. 2000, 112, 3074
5i
Schneider C.
Reese O.
Chem. Eur. J.
2002,
8:
2585
5j
Schneider C.
Tolksdorf F.
Rehfeuter M.
Synlett
2002,
2098
6 Davies et al. reported the microwave-assisted Cope rearrangement of a similar, but ester-derived aldol product in hexane (190 °C, 70 min) and an ionic liquid (240 °C, 45 min). Our results with the imide-based aldol products 1 compare favorably with these conditions. See: Davies HML.
Beckwith REJ.
J. Org. Chem.
2004,
69:
9241
7 Excellent review: Kappe CO.
Angew. Chem. Int. Ed.
2004,
43:
6250 ; Angew. Chem. 2004, 116, 6408
8
Typical Experimental Procedure.
A microwave reactor ‘microPREP A’ (MLS GmbH, Germany) with a single magnetron (max. 1200 W, pulsed irradiation, 2.45 GHz) terminal 320 controller, and easy CONTROL 06 software was used for the microwave experiments. A power of max. 500 W was used in all experiments and the temperature inside the reaction mixture was controlled with a ATC-FO 300 fiberoptic sensor inserted into the reaction vessel and automatically adjusted to the set temperature. The amount of 300 mg (0.70 mmol) of 1,5-diene 1a was dissolved in 25 mL dry DMF and placed in a microwave vessel, which was sealed. The sample was irradiated for 15 min at 180 °C whereupon the solvent was evaporated in vacuo. The crude product was analyzed by NMR to determine the diastereoselectivity (25:1) and subsequently purified by flash chromatography over silica gel with Et2O and pentane (1:6) to furnish 275 mg of the Cope product 2a (91%) as a colorless solid. Mp 60-61 °C; [α]D
20 13.0 (c 1.2, CHCl3). IR (film): ν = 3027, 2956, 2858, 1782, 1681 cm-1. 1H NMR (300 MHz, CDCl3): δ = 0.13 (s, 6 H, TBS), 0.92 (s, 9 H, TBS), 1.02 (d, J = 7.0 Hz, 3 H, Me), 2.28-2.32 (m, 2 H), 2.79 (dd, J = 13.0, 9.8 Hz, 1 H, benzyl-H), 2.90 (m, 1 H), 3.34 (dd, J = 13.0, 3.0 Hz, 1 H, benzyl-H), 4.14-4.23 (m, 2 H), 4.31 (dd, J = 10.0, 8.7 Hz, 1 H, 6′-H), 4.72 (m, 1 H), 6.16 (dd, J = 6.0, 1.0 Hz, 1 H, 7′-H), 7.21-7.36 (m, 7 H, 2′-H, 3′H, phenyl-H). 13C NMR (75 MHz, CDCl3): δ = -5.30, -5.22, 18.35, 20.94, 25.76, 28.46, 38.06, 40.63, 55.45, 66.18, 115.10, 121.20, 127.40, 129.10, 129.60, 135.60, 138.30, 151.10, 153.50, 165.10. MS (EI, 70eV): m/z = 429 (1), 414 (10), 372 (20), 185 (100), 91 (45), 73 (99). Anal. Calcd: C, 67.10; H, 8.21; N, 3.26. Found: C, 67.14; H, 8.39; N, 3.13.