Abstract
The N-heterocyclic carbene-catalyzed conjugate Umpolung of differently substituted α,β-unsaturated aldehydes, e. g. cinnamaldehydes, α-methylcinnamaldehydes, and crotonaldehydes, is described. Coupling of these compounds with a variety of electrophilic aldehydes and ketones results in the selective formation of highly substituted β- and γ-butyrolactones.
Key words
carbenes - Umpolung - lactones - heterocycles - cyclization
References
1
Seebach D.
Angew. Chem., Int. Ed. Engl.
1979,
18:
239
2 For example the use of deprotonated dithianes as masked carbonyl anion synthons has become a very popular stoichiometric approach, see: Seebach D.
Corey EJ.
J. Org. Chem.
1975,
40:
231
3a
Eisch JJ.
J. Organomet. Chem.
1995,
500:
101
3b
Pohl M.
Lingen B.
Müller M.
Chem. Eur. J.
2002,
8:
5288
4a
Wöhler F.
Liebig J.
Ann. Pharm.
1832,
3:
249
4b
Lapworth A.
J. Chem. Soc.
1903,
83:
995
4c
Breslow R.
J. Am. Chem. Soc.
1958,
80:
3719
5a
Stetter H.
Kuhlmann H.
Org. React.
1991,
40:
407
5b
Stetter H.
Kuhlmann H.
Chem. Ber.
1976,
109:
2890
For excellent reviews, see:
6a
Ahlbrecht H.
Beyer U.
Synthesis
1999,
365
6b
Hoppe D.
Angew. Chem., Int. Ed. Engl.
1984,
23:
932
6c
Westiuk N.
Tetrahedron
1983,
39:
205
See also:
6d
Hoppe D.
Zschage O.
Angew. Chem., Int. Ed. Engl.
1989,
28:
69
6e
Zschage O.
Hoppe D.
Tetrahedron
1992,
48:
5657
For N-heterocyclic carbene catalyzed conjugate Umpolung and related reactions, see:
7a
Chow KY.-K.
Bode JW.
J. Am. Chem. Soc.
2004,
126:
8126
7b
Reynolds NT.
Read de Alaniz J.
Rovis T.
J. Am. Chem. Soc.
2004,
126:
9518
7c
Burstein C.
Glorius F.
Angew. Chem. Int. Ed.
2004,
43:
6205
7d
Sohn SS.
Rosen EL.
Bode JW.
J. Am. Chem. Soc.
2004,
126:
14370
7e
He M.
Bode JW.
Org. Lett.
2005,
7:
3131
7f
Sohn SS.
Bode JW.
Org. Lett.
2005,
7:
3873
7g
Chan A.
Scheidt K.
A. Org. Lett.
2005,
7:
905
7h
Reynolds NT.
Rovis T.
J. Am. Chem. Soc.
2005,
127:
16406
7i
Zeitler K.
Org. Lett.
2006,
8:
637
Very recently, the formation of spiro γ-butyrolactones by conjugate Umpolung using cyclic 1,2-diketones as the electrophiles was reported:
7j
Nair V.
Vellalath S.
Poonoth M.
Mohan R.
Suresh E.
Org. Lett.
2006,
8:
507
For N-heterocyclic carbene catalyzed transesterification reactions, see:
8a
Grasa GA.
Kissling RM.
Nolan SP.
Org. Lett.
2002,
4:
3583
8b
Grasa GA.
Guveli T.
Singh R.
Nolan SP.
J. Org. Chem.
2003,
68:
2812
8c
Singh R.
Kissling RM.
Letellier M.-A.
Nolan SP.
J. Org. Chem.
2004,
69:
209
8d
Singh R.
Nolan SP.
Chem. Commun.
2005,
5456
8e
Nyce GW.
Lamboy JA.
Connor EF.
Waymouth RM.
Hedrick JL.
Org. Lett.
2002,
4:
3587
8f
Connor EF.
Nyce GW.
Myers M.
Mock A.
Hedrick JL.
J. Am. Chem. Soc.
2002,
124:
914
8g
Nyce GW.
Glauser T.
Connor EF.
Mock A.
Waymouth RM.
Hedrick JL.
J. Am. Chem. Soc.
2003,
125:
3046
For a related amidation, see:
8h
Schmidt MA.
Movassaghi M.
Org. Lett.
2005,
7:
2453
For the N-heterocyclic carbene catalyzed kinetic resolution of alcohols, see:
9a
Suzuki Y.
Yamauchi K.
Muramatsu K.
Sato M.
Chem. Commun.
2004,
2770
9b
Kano T.
Sasaki K.
Maruoka K.
Org. Lett.
2005,
7:
1347
For N-heterocyclic carbene catalyzed benzoin condensations, see:
10a
Enders D.
Niemeier O.
Balensiefer T.
Angew. Chem. Int. Ed.
2006,
45:
1463
10b
Enders D.
Niemeier O.
Synlett
2004,
2111
10c
Enders D.
Kallfass U.
Angew. Chem. Int. Ed.
2002,
41:
1743
10d
Hachisu Y.
Bode JW.
Suzuki K.
J. Am. Chem. Soc.
2003,
125:
8432
10e
Hachisu Y.
Bode JW.
Suzuki K.
Adv. Synth. Catal.
2004,
346:
1097
See also:
10f
Dudding T.
Houk KN.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
5770
10g
Pesch J.
Harms K.
Bach T.
Eur. J. Org. Chem.
2004,
2025
For N-heterocyclic carbene catalyzed Stetter reactions, see:
11a
Kerr MS.
Read de Alaniz J.
Rovis T.
J. Am. Chem. Soc.
2002,
124:
10298
11b
Kerr MS.
Rovis T.
J. Am. Chem. Soc.
2004,
126:
8876
11c
Read de Alaniz J.
Rovis T.
J. Am. Chem. Soc.
2005,
127:
6284
11d
Mattson AE.
Bharadwaj AR.
Scheidt KA.
J. Am. Chem. Soc.
2004,
126:
2314
11e
Liu Q.
Rovis T.
J. Am. Chem. Soc.
2006,
128:
2552
11f
Braun RU.
Zeitler K.
Müller TJJ.
Org. Lett.
2001,
3:
3297
11g
Bharadwaj AR.
Scheidt KA.
Org. Lett.
2004,
6:
2465
11h
Myers MC.
Bharadwaj AR.
Milgram BC.
Scheidt KA.
J. Am. Chem. Soc.
2005,
127:
14675
For some other N-heterocyclic carbene catalyzed reactions, see:
12a
Suzuki Y.
Toyota T.
Imada F.
Sato M.
Miyashita A.
Chem. Commun.
2003,
1314
12b
Song JJ.
Tan Z.
Reeves JT.
Gallou F.
Yee NK.
Senanayake CH.
Org. Lett.
2005,
7:
2193
12c
Song JJ.
Gallou F.
Reeves JT.
Tan Z.
Yee NK.
Senanayake CH.
J. Org. Chem.
2006,
71:
1273
12d
Duong HA.
Cross MJ.
Louie J.
Org. Lett.
2004,
6:
4679
12e
Mattson AE.
Scheidt KA.
Org. Lett.
2004,
6:
4363
12f
Fischer C.
Smith SW.
Powell DA.
Fu GC.
J. Am. Chem. Soc.
2006,
128:
1472
For the stoichiometric use of N-heterocyclic carbenes as reagents, see:
13a
Nair V.
Bindu S.
Sreekumar V.
Rath NP.
Org. Lett.
2003,
5:
665
13b
Rigby JH.
Wang Z.
Org. Lett.
2002,
4:
4289
13c
Enders D.
Breuer K.
Raabe G.
Runsink J.
Teles JH.
Liebigs Ann. Chem.
1996,
2019
13d
Nair V.
Bindu S.
Sreekumar V.
Angew. Chem. Int. Ed.
2004,
43:
5130
13e
Ma C.
Yang Y.
Org. Lett.
2005,
7:
1343
For excellent reviews on N-heterocyclic carbenes in organocatalysis, see:
14a
Enders D.
Balensiefer T.
Acc. Chem. Res.
2004,
37:
534
14b
Johnson JS.
Angew. Chem. Int. Ed.
2004,
43:
1326
14c
Christmann M.
Angew. Chem. Int. Ed.
2005,
44:
2632
14d
Zeitler K.
Angew. Chem. Int. Ed.
2005,
44:
7506
For general reviews on N-heterocyclic carbenes, see:
14e
Herrmann WA.
Angew. Chem. Int. Ed.
2002,
41:
1291
14f
Herrmann WA.
Köcher C.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2162
14g
Arduengo AJ.
Krafczyk R.
Chem. Unserer Zeit
1998,
32:
6
14h
Bourissou D.
Guerret O.
Gabbaï FP.
Bertrand G.
Chem. Rev.
2000,
100:
39
14i
Perry M. C.
Burgess K.
Tetrahedron: Asymmetry
2003,
14:
951
14j
Cesar V.
Bellemin-Laponnaz S.
Gade L. H.
Chem. Soc. Rev.
2004,
33:
619
For excellent reviews on modern organocatalysis, see:
15a
Seayad J.
List B.
Org. Biomol. Chem.
2005,
3:
719
15b
Dalko PI.
Moisan L.
Angew. Chem. Int. Ed.
2004,
43:
5138
15c
Dalko PI.
Moisan L.
Angew. Chem. Int. Ed.
2001,
40:
3726
15d
Berkessel A.
Gröger H.
Asymmetric Organocatalysis
VCH;
Weinheim:
2004.
16 Under a different set of reaction conditions (t-BuOH, DBU, THF) and using two equivalents of electrophilic aldehyde, Bode et al. reported improved yields: ref. 7d.
17 The stereochemistry of the lactones 1, 7, 12, and 20 was assigned by X-ray and NMR analysis. The 1H NMR data for the lactone ring hydrogens of 1a-h is very similar within the cis and trans series. The stereochemistry of the products 1 was therefore assigned by comparison of the NMR data for these compounds with that of cis-1d, whose structure was unequivocally established by X-ray structural analysis. The stereochemistry of lactones 7, 12, and 20 was assigned in an analogous manner. CCDC-246600 (cis-1d), CCDC-250238 (u-7b), CCDC-603356 (12c-I) and CCDC-603357 (20c-II) contain the crystallographic data (excluding structure factors) for this paper.
[25]
This data can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 (1223)336033; e-mail: deposit@ccdc.cam.ac.uk.
18 Bode et al. found that when using cis-cinnamaldehyde the same stereochemical outcome as with trans-cinnamaldehyde was observed. Moreover, stopping the reaction of cis-cinnamaldehyde prior to completion a significant amount of trans-cinnamaldehyde was observed, showcasing the importance of homoenolate resonance structure IIb: ref. 7d.
19a
Glorius F.
Altenhoff G.
Goddard R.
Lehmann C.
Chem. Commun.
2002,
2704
For the successful application of these ligands in the Suzuki cross-coupling of sterically hindered aryl chlorides, see:
19b
Altenhoff G.
Goddard R.
Lehmann CW.
Glorius F.
Angew. Chem. Int. Ed.
2003,
42:
3690
19c
Altenhoff G.
Goddard R.
Lehmann CW.
Glorius F.
J. Am. Chem. Soc.
2004,
126:
15195
20 Crotonaldehyde and α-methylcinnamaldehyde were reported to be unreactive under the conditions employed by Bode et al.: ref. 7 of ref. 7d.
21 For lactones in natural products, see: Seitz M.
Reiser O.
Curr. Opin. Chem. Biol.
2005,
9:
285
For the first step of the synthesis of aldehyde 23, see:
22a
Boatman S.
Harris TM.
Hauser CR.
J. Org. Chem.
1965,
30:
3321
For the Heck reaction methodology used in the second step, see:
22b
Battistuzzi G.
Cacchi S.
Fabrizi G.
Org. Lett.
2003,
5:
777
23
Stott K.
Keeler J.
Van Q N.
Shaka AJ.
J. Magn. Reson.
1997,
125:
302
24
Pearson AJ.
Mesaros EF.
Org. Lett.
2002,
4:
2001
25a Lehmann, C. W. private communication to the Cambridge Structural Database (2004), deposition numbers CCDC-246600 and 250238.
25b Harms, K. private communication to the Cambridge Structural Database (2006), deposition numbers CCDC-603356 and 603357.