References and Notes
Isolated from the Indian plant Coleus forskohlii. See:
1a
Bhat SV.
Bajwa BS.
Dornauer H.
de Souza NJ.
Fehlhaber H.-W.
Tetrahedron Lett.
1977,
1669
1b
Bhat SV.
Bajwa BS.
Dornauer H.
de Souza NJ.
J. Chem. Soc., Perkin Trans. 1
1982,
767
For biological properties of 1, see:
2a
Bhat SV.
Dohadwalla AN.
Bajwa BS.
Dadkar NK.
Dornauer H.
de Souza NJ.
J. Med. Chem.
1983,
26:
486
2b
Khandelwal Y.
Rajaswari K.
Rajagopalan R.
Swamy L.
Dohadwalla AN.
de Souza NJ.
Rupp RH.
J. Med. Chem.
1988,
31:
1872
2c
Seamon KB.
Dady JW.
Adv. Cyclic Nucleotide Res.
1986,
20:
1 ; and references cited therein
For synthesis of 1, see:
2d
Colombo MI.
Zinczuk J.
Ruveda EA.
Tetrahedron
1992,
48:
963
2e
Delpech B.
Calvo D.
Lett R.
Tetrahedron Lett.
1996,
37:
1015
3
Bhat SV.
Prog. Chem. Org. Nat. Prod.
1993,
1
4 Isolated from Trypterygium wilfordii. See: Duan H.
Takaishi Y.
Momota H.
Ohmoto Y.
Taki T.
Jia Y.
Li D.
J. Nat. Prod.
1999,
62:
1522
5
Westley JW.
Polyethers Antibiotics: Naturally Occurring Acid Ionophores
Vol. 1-2:
Marcel Dekker;
New York:
1982.
6a Nakamura T, Oshio T, Shimizu K, and Ozawa T. inventors; JP 90-330570.
6b
Nakamura M.
Kunimoto S.
Takahashi Y.
Naganawa H.
Sakane M.
Inone S.
Ohno T.
Takeuchi T.
Antimicrob. Agents Chemother.
1992,
36:
492
6c
Kawada M.
Sumi S.
Umezawa K.
Inonye S.
Sawa T.
Sato H.
J. Antibiot.
1992,
45:
556
6d
Otoguro K.
Kohana A.
Manabe C.
Ishiyama A.
Li H.
Shiomi K.
Yamada H.
Omura S.
J. Antibiot.
2001,
54:
658
7a
Dobler M.
Ionophores and Their Structures
John Wiley and Sons;
New York:
1981.
7b
Westley JW.
Adv. Appl. Microbiol.
1977,
22:
177
7c
Pressman BC.
Annu. Rev. Biochem.
1976,
45:
501
7d
Westley JW.
Annu. Rep. Med. Chem.
1975,
10:
246
Isolated from the culture broth of a microorganism from the genus Streptomyces. See:
8a
Imoto M.
Umezawa K.
Takahashi Y.
Naganawa H.
Iitaka Y.
Nakamura H.
Koizurni Y.
Sasaki Y.
Hamada M.
Sawa T.
Takeuchi T.
J. Nat. Prod.
1990,
53:
825
8b
Odai H.
Shindo K.
Odagawa A.
Mochizuki J.
Hamada M.
Takeuchi T.
J. Antibiot.
1994,
47:
939
8c
Fuller NO.
Morken JP.
Org. Lett.
2005,
7:
4867
For the synthesis of cyclic ethers from diols, see:
9a
The Chemistry of the Hydroxyl Group, In The Chemistry of Functional Groups
Part 2:
Patai S.
Interscience;
London:
1971.
p.641-706
9b
Comprehensive Organic Chemistry, The Synthesis and Reactions of Organic Compounds
Vol. 4:
Barton D.
Ollis WD.
Pergamon Press;
Oxford:
1979.
p.875-877
9c
Comprehensive Organic Synthesis: Selectivity, Strategy and Efficiency in Modern Organic Chemistry
Vol. 6:
Trost B.
Fleming I.
Pergamon;
London:
1992.
p.22-31
9d
Larock RC.
Comprehensive Organic Transformations
John Wiley and Sons;
New York:
1999.
p.89-899
9e
Smith MB.
March J.
Advanced Organic Chemistry
Wiley Interscience;
New York:
2001.
p.479-480
For reviews on the use of CAN as oxidant, see:
10a
Richardson WH. In
Oxidation in Organic Chemistry
Part A:
Wiberg KB.
Academic;
New York:
1965.
Chap IV.
10b
Ho T.-L. In
Organic Syntheses by Oxidation with Metal Compounds
Mijs WJ.
de Jonge CRHL.
Plenum;
New York:
1986.
Chap. 11.
10c
Handbook of Reagents for Organic Synthesis, Oxidizing and Reducing Agents
Burke SD.
Danheiser RL.
John Wiley and Sons;
Chichester:
1999.
p.77-80
11
Mellor JM.
Parkes R.
Millar RW.
Tetrahedron Lett.
1997,
38:
8739
12
Reddy MVR.
Malhotra B.
Bauker YD.
Tetrahedron Lett.
1995,
36:
4861
13
Ates A.
Gautier A.
Leroy B.
Plancher J.-M.
Quesnel Y.
Vanherck J.-C.
Markó IE.
Tetrahedron
2003,
59:
8989
14a
Pan W.-P.
Chang F.-R.
Wei L.-M.
Wu M.-J.
Wu Y.-C.
Tetrahedron Lett.
2003,
44:
331
14b
Goswani P.
Chowdhury P.
New. J. Chem.
2000,
24:
955
15
Hwu JR.
Jain M.
Tsay S.-C.
Hakimalahi GH.
Tetrahedron Lett.
1996,
37:
2035
16
Hwu JR.
Jain M.
Tasi FY.
Tasy S.-C.
Balakumar A.
Hakimalahi GH.
J. Org. Chem.
2000,
65:
5077
17a
Trahanovsky WS.
Young MG.
Nave PM.
Tetrahedron Lett.
1969,
2501
17b
Doyle MP.
Zuidema LJ.
Bade TR.
J. Org. Chem.
1975,
40:
1454
17c
Fujise Y.
Kobayashi E.
Tsuchida H.
Ito S.
Heterocycles
1978,
11:
351
17d
Balasubraniam V.
Robinson CH.
Tetrahedron Lett.
1981,
22:
501
18a
Trahanovsky WS.
Cramer J.
J. Org. Chem.
1971,
36:
1890
18b
Trahanovsky WS.
Fox NS.
J. Am. Chem. Soc.
1974,
96:
7968
18c
Ho T.-L.
Synthesis
1978,
936
19a
Meyer K.
Rocek J.
J. Am. Chem. Soc.
1972,
94:
1209
19b
Hunter NR.
MacAlpine GA.
Liu H.-J.
Valenta Z.
Can. J. Chem.
1970,
48:
1436
20
Trahanovsky WS.
Flash PJ.
Smith LM.
J. Am. Chem. Soc.
1969,
91:
5068
21
Trahanovsky WS.
Macaulay DB.
J. Org. Chem.
1973,
38:
1497
22 For a review, see: Nair V.
Mathew J.
Prabhakaran J.
Chem. Soc. Rev.
1997,
127
23 For a review, see: Nair V.
Panicker SB.
Nair LG.
George TG.
Augustine A.
Synlett
2003,
156
24a
Torii S.
Uneyama K.
Isihara M.
J. Org. Chem.
1974,
39:
3645
24b
Strikler H.
Kovats E.
Helv. Chim. Acta
1966,
49:
2055
25
Nakamura S.
Ishihara K.
Yamamoto H.
J. Am. Chem. Soc.
2000,
122:
8131 ; and references cited therein
26
Barrero AF.
Alvarez-Manzaneda EJ.
Chahboun R.
Paiz MC.
Tetrahedron Lett.
1998,
39:
9543 ; and references cited therein
27a
Barrero AF.
Altarejos J.
Alvarez-Manzaneda EJ.
Ramos JM.
Salido S.
Tetrahedron
1993,
49:
6251
27b
Barrero AF.
Alvarez-Manzaneda EJ.
Altarejos J.
Salido S.
Ramos JM.
Tetrahedron
1993,
49:
10405
27c
Barrero AF.
Sánchez JF.
Alvarez-Manzaneda EJ.
Muñoz Dorado M.
Haidour A.
Tetrahedron
1994,
50:
6653
27d
Barrero AF.
Altarejos J.
Alvarez-Manzaneda EJ.
Ramos JM.
Salido S.
J. Org. Chem.
1996,
61:
2215 ; and references cited therein
28
Ohloff G.
Vial Ch.
Demole E.
Enggist P.
Giersch W.
Jegou E.
Carus AJ.
Polonsky J.
Lederer E.
Helv. Chim. Acta
1986,
69:
163
29
Snowden RL.
Eichenberger J.-C.
Giersch W.
Thommen W.
Schulte-Elte KH.
Helv. Chim. Acta
1993,
76:
1608
30
Márquez C.
Rodriguez González B.
Valverde-López S.
An. Quim.
1975,
71:
603
31
Vlad PF.
Ungur ND.
Synthesis
1983,
216
32a
Hosking JR.
Brant CW.
Ber. Dtsch. Chem. Ges.
1935,
68:
37
32b
Giles JA.
Schumacher JN.
Mims SS.
Bernasek E.
Tetrahedron
1962,
18:
169
33
Conner AH.
Rowe JW.
Phytochemistry
1977,
16:
1777
34
Coste-Manière IC.
Zahra JP.
Waegell W.
Tetrahedron Lett.
1988,
29:
1017
35
Typical Experimental Procedure.
To a deoxygenated solution of compound (1 mmol) in MeCN (10 mL) was added solid CAN (1.2 mmol) and the mixture was stirred under an argon atmosphere at r.t. for the specified time (Table
[1]
). The progress of the reaction was monitored by TLC. After completion of the reaction, the solvent was removed and the residue was diluted with Et2O (20 mL), washed with H2O, brine and dried over anhyd Na2SO4. After removal of the solvent the residue was subjected to column chromatography on silica gel. Elution with 5% Et2O-hexane afforded the pure product.
36 All new compounds were fully characterized spectroscopically and had satisfactory HRMS data.
Selected data:
Compound 23: 1H NMR (400 MHz, CDCl3): δ = 1.28 (s, 3 H), 1.19 (s, 3 H), 0.85 (t, J = 3.8 Hz, 3 H), 0.85 (s, 3 H), 0.79 (s, 3 H), 0.76 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 74.6 (C), 72.9 (C), 58.3 (CH), 56.5 (CH), 43.1 (CH2), 42.2 (CH2), 39.2 (CH2), 37.9 (CH2), 36.9 (C), 35.7 (CH2), 33.4 (CH3), 33.3 (C), 27.3 (CH3), 24.9 (CH3), 21.3 (CH3), 19.9 (CH2), 18.7 (CH2), 15.8 (CH3), 15.4 (CH2), 8.1 (CH3). IR (film): 1638, 1463, 1374, 1278, 1119, 1006, 959, 845 cm-1. MS (EI) m/z (relative intensity) = 292 (3), 263 (22), 245 (100), 223 (5), 177 (18), 137 (34), 123 (23). HRMS (FAB): m/z calcd for C20H36ONa: 315.2664; found: 315.2650.
Compound 29: 1H NMR (400 MHz, CDCl3): δ = 3.90 (d, J = 10.8 Hz, 1 H), 3.72 (d, J = 10.8 Hz, 1 H), 2.06 (s, 3 H), 1.26 (s, 3 H), 1.21 (s, 3 H), 0.84 (s, 3 H), 0.77 (s, 3 H), 0.75 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 171.2 (C), 75.2 (C), 72.9 (CH2), 71.8 (C), 57.5 (CH), 56.5 (CH), 43.0 (CH2), 42.2 (CH2), 39.1 (CH2), 36.9 (C), 33.7 (CH2), 33.4 (CH3), 33.3 (C), 25.0 (CH3), 24.8 (CH3), 21.4 (CH3), 21.2 (CH3), 19.9 (CH2), 18.6 (CH2), 15.7 (CH3), 14.9 (CH3). IR (film): 1744, 1464, 1377, 1241, 1122, 1044, 994, 757 cm-1. MS (EI) m/z (relative intensity) = 336 (16), 303(7), 276 (10), 263 (12), 245 (60), 191 (10), 137 (28). HRMS (FAB): m/z calcd for C21H36O3Na: 359.2562; found: 359.2574.
Compound 31: 1H NMR (400 MHz, CDCl3): δ = 3.71 (s, 3 H), 2.13 (ddd, J = 14.0, 8.4, 4.6 Hz, 1 H), 1.85 (dt, J = 12.4, 3.3 Hz, 1 H), 1.79 (m, 2 H), 1.34 (s, 3 H), 1.22 (s, 3 H), 0.88 (dd, J = 12.5, 1.9 Hz, 1 H), 0.83 (s, 3 H), 0.76 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 177.1 (C), 76.1 (C), 74.7 (C), 56.3 (CH), 52.4 (CH3) 52.2 (CH), 42.7 (CH2), 41.9 (CH2), 39.0 (CH2), 37.2 (C), 33.3 (CH3), 33.2 (C), 31.3 (CH2), 28.1 (CH3), 25.6 (CH3), 21.5 (CH3), 19.9 (CH2), 18.5 (CH2), 15.0 (CH3), 14.7 (CH3). IR (film): 1738, 1461, 1378, 1283, 1103, 992, 892, 849, 760 cm-1. MS (EI) m/z (relative intensity) = 323 (22), 307 (18), 263 (19), 245 (68), 196 (8), 137 (36). HRMS (FAB): m/z calcd for C20H34O3Na: 345.2406; found: 345.2412.
Compound 35: 1H NMR (400 MHz, CDCl3): δ = 3.32 (d, J = 10.6 Hz, 1 H), 3.07 (d, J = 10.6 Hz, 1 H), 2.32 (s, 1 H), 1.29 (s, 3 H), 1.16 (s, 3 H), 1.10 (dd, J = 12.6, 2.4 Hz, 1 H), 0.99 (dd, J = 12.2, 1.5 Hz, 1 H), 0.85 (s, 3 H), 0.79 (s, 3 H), 0.76 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 75.5 (C), 73.3 (C), 70.9 (CH2), 58.2 (CH), 56.4 (CH), 43.1 (CH2), 42.2 (CH2), 39.2 (CH2), 36.9 (C), 33.4 (CH3), 33.3 (C), 32.5 (CH2), 25.1 (CH3), 24.5 (CH3), 21.3 (CH3), 19.8 (CH2), 18.6 (CH2), 15.8 (CH3), 15.0 (CH3). IR (film): 3455, 1463, 1377, 1259, 1121, 1052, 960, 755 cm-1. MS (EI) m/z (relative intensity) = 294 (8), 263 (14), 245 (76), 191 (10), 149 (12), 137 (40), 83 (71). HRMS (FAB): m/z calcd for C19H34O2Na: 317.2456; found: 317.2448.