Subscribe to RSS
DOI: 10.1055/s-2006-948183
Heck Reaction on 1-Alkoxy-1,3-dienes in Ionic Liquids: A Superior Medium for the Regioselective Arylation of the Conjugated Dienic System
Publication History
Publication Date:
04 August 2006 (online)

Abstract
α,β-Unsaturated acetals afford, in the presence of the LIC-KOR superbase and of a suitable electrophile, 1-functionalized-1-alkoxybuta-1,3-dienes. These substrates cross couple with aryl derivatives in the presence of a Pd catalyst (Heck conditions) in a regio- and stereoselective mode using different ionic liquids as a solvent.
Key words
Heck reaction - ionic liquid - unsaturated acetals - regioselectivity - stereoselectivity
-
1a
Heck RF. J. Am. Chem. Soc. 1968, 90: 5518 -
1b
Heck RF.Nolley JP. J. Org. Chem. 1972, 37: 2320 - For reviews:
-
1c
Beletskaya IP.Cheprakov AV. Chem. Rev. 2000, 100: 3009 -
1d
de Meijere A.Meyer FE. Angew. Chem., Int. Ed. Engl. 1994, 33: 2379 ; and references therein -
2a
Baker R.Bradshaw JWS. In Aliphatic and Related Natural Product Chemistry Specialist Periodical Report, Vol. 3:Gunstone FD. Royal Society of Chemistry; London: 1983. -
2b
Nicolaou KC.Ramphal JY.Petasis NA.Serhan CN. Angew. Chem., Int. Ed. Engl. 1991, 30: 1100 -
2c
Launay V.Beaude I.Quintard J.-P. Bull. Soc. Chim. Fr. 1997, 134: 937 -
2d
Dominguez B.Iglesia B.de Lera AR. J. Org. Chem. 1998, 63: 4135 -
2e
Lipshutz BH.Ullman B.Lindsley C.Pecchi S.Buzard DJ.Dickson D. J. Org. Chem. 1998, 63: 6092 -
2f
Peng ZH.Li YL.Wu WL.Liu CX.Wu YL. J. Chem. Soc., Perkin Trans. 1 1996, 1057 -
2g
Chem. Rev. 1994, 94, 1-278
-
2h
Molecular Engineering for Advanced Materials
Vol. 456:
Becher J.Schaumburg K. Kluwer Academic Publisher; Dordrecht: 1995. p.159 - 3
Bader RR.Baumeister P.Blaser H.-U. Chimia 1996, 50: 99 -
4a
Grushin VV.Alper H. Chem. Rev. 1994, 94: 1047 -
4b
Riermeier TH.Zapf A.Beller M. Top. Catal. 1998, 4: 301 -
4c
Shaughnessy KH.Kim P.Hartwig JF. J. Am. Chem. Soc. 1999, 121: 2123 -
4d
Lee S.Hartwig JF. J. Org. Chem. 2001, 66: 3402 -
4e
Stambuli JP.Stauffer SR.Shaughnessy KH.Hartwig JF. J. Am. Chem. Soc. 2001, 123: 2677 -
5a
Bozell JJ.Vogt CE. J. Am. Chem. Soc. 1988, 110: 2655 -
5b
Carpentier JF.Petit F.Mortreux A.Dufaud V.Basset J.-M.Thivolle-Cazat J. J. Mol. Catal. 1993, 81: 1 -
6a
Jeffery T. Tetrahedron Lett. 1985, 26: 2667 -
6b
Jeffery T.David M. Tetrahedron Lett. 1998, 39: 5751 -
6c
Jeffery T. Tetrahedron Lett. 1999, 40: 1673 -
6d
Jeffery T. Tetrahedron Lett. 2000, 41: 8445 - 7
Kaufmann DE.Nouroozian M.Henze H. Synlett 1996, 1091 -
8a
Herrmann WA.Böhm VPW. J. Organomet. Chem. 1999, 572: 141 -
8b
Böhm VPW.Herrmann WA. Chem. Eur. J. 2000, 6: 1017 - 9
Carmichael AJ.Earle MJ.Holbrey JD.McCormac PB.Seddon KR. Org. Lett. 1999, 1: 997 - 10
Xu L.Chen W.Xiao J. Organometallics 2000, 19: 1123 - 11
Howarth J.Dallas A. Molecules 2000, 5: 851 - 12
Mathew CJ.Smith PJ.Welton T.White AJP.Williams DJ. Organometallics 2001, 20: 3848 -
13a
Comprehensive Organic Synthesis
Vol. 4:
Heck RF.Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.833 -
13b
Daves GD.Hallberg A. Chem. Rev. 1989, 89: 1433 -
13c
Andersson C.-M.Hallberg A.Daves GD. J. Org. Chem. 1987, 52: 3529 -
13d
Hegedus LS.Toro JL.Miles WH.Harrington PJ. J. Org. Chem. 1987, 52: 3319 -
14a
Cabri W.Candiani I.Bedeschi A.Penco S.Santi R. J. Org. Chem. 1992, 57: 1481 -
14b
Cabri W.Candiani I.Bedeschi A.Santi R. J. Org. Chem. 1990, 55: 3654 -
14c
Andersson C.-M.Hallberg A. J. Org. Chem. 1989, 54: 1502 -
14d
Cabri W.Candiani I. Acc. Chem. Res. 1995, 28: 2 -
15a
Andersson C.-M.Larsson J.Hallberg A. J. Org. Chem. 1990, 55: 5757 -
15b
Larhed M.Andersson C.-M.Hallberg A. Acta Chem. Scand. 1993, 47: 21 -
16a
Battistuzzi G.Cacchi S.Fabrizi G.Bernini R. Synlett 2003, 1133 -
16b
Nájera C.Botella L. Tetrahedron 2005, 61: 9688 -
17a
Schlosser M. J. Organomet. Chem. 1967, 8: 9 -
17b
Schlosser M. Mod. Synth. Methods 1992, 6: 227 -
17c
Mordini A. In Advances in Carbanion Chemistry Vol. 1:Snieckus V. JAI Press, Inc.; Greenwich CT: 1992. p.1-45 -
17d
Schlosser M.Faigl F.Franzini L.Geneste H.Katsoulos G.Zhong G. Pure Appl. Chem. 1994, 66: 1439 -
17e
Lochmann L. Eur. J. Inorg. Chem. 2000, 1115 - 18
Venturello P. J. Chem. Soc., Chem. Commun. 1992, 1032 -
19a
Prandi C.Venturello P. J. Org. Chem. 1994, 59: 3494 -
19b
Prandi C.Venturello P. J. Org. Chem. 1994, 59: 5458 -
20a
Balma Tivola P.Deagostino A.Prandi C.Venturello P. J. Chem. Soc., Perkin Trans. 1 2001, 437 -
20b
Deagostino A.Prandi C.Venturello P. Curr. Org. Chem. 2003, 7: 821 -
20c
Allasia S.Deagostino A.Prandi C.Zavattaro C.Venturello P. Synthesis 2005, 3627 -
20d
Deagostino A.Prandi C.Zavattaro C.Venturello P. Eur. J. Org. Chem. 2006, in press -
21a
Deagostino A.Prandi C.Venturello P. Org. Lett. 2003, 5: 3815 -
21b
Deagostino A.Migliardi MG.Occhiato E.Prandi C.Zavattaro C.Venturello P. Tetrahedron 2005, 61: 3429
References and Notes
For similar considerations about regioselectivity in palladium hydride elimination from the carbopalladate intermediate in the Heck arylation of acrolein diethyl acetal, see ref. 16a and 16b.
23
Typical Procedure.
A heavy-wall tube containing a stirring bar was dried, Ar-filled, and then charged with tetrabutylammonium bromide (TBAB, 1.0 g, 3.1 mmol) and Pd(OAc)2 (0.0011 g, 0.005 mmol). The mixture was melted heating the vessel at 110 °C in an oil bath for 10 min, then cooled to r.t. Iodobenzene (0.20 g, 1.0 mmol), (E)-4-ethoxyocta-1,3-diene (0.31 g, 2.0 mmol) and NaOAc (0.082 g 1.0 mmol,) were subsequently added and the tube was closed. The reaction mixture was stirred for 16 h at 110 °C. Samples were periodically taken and partitioned between Et2O and H2O. The organic layer was analyzed by GC and TLC analysis. After complete consumption of the reagents H2O was added (10 mL). The reaction was worked up by extraction with Et2O (3 × 10 mL), dried (K2CO3) and filtered. After removal of the solvent the crude reaction mixture was purified by column chromatography on SiO2 deactivated with Et3N (1%) (eluent: PE-Et2O, 98:2) to afford (1E,3E)-4-ethoxy-1-phenyl-octa-1,3-diene (0.184 g, 80%) as a colorless oil: 1H NMR (200 MHz, CDCl3): δ = 0.95 (t, J = 7.1 Hz, 3 H), 1.56 (m, 7 H), 2.38 (t, J = 7.1 Hz, 2 H), 3.82 (q, J = 7.1 Hz, 2 H), 5.42 (d, J = 10.8 Hz, 1 H), 6.34 (d, J = 15.6 Hz, 1 H), 6.90 (dd, J = 15.6, 10.8 Hz, 1 H), 7.27 (m, 5 H). 13C NMR (50 MHz, CDCl3): δ = 13.78, 14.39, 22.29, 29.98, 30.61, 62.28, 100.05, 125.30, 125.49, 125.66, 125.98, 128.31, 138.44, 161.03. IR (neat): 3062, 3030, 1628, 1599, 750, 700 cm-1. MS (EI, 70 eV): m/z (%) = 230 (92) [M+], 115 (50), 91 (41), 85 (83), 57 (100). Anal. Calcd (%) for C16H22O (230.35): C, 83.43; H, 9.63. Found: C, 83.39; H 9.65.