References and Notes
1
Yamamoto Y.
Asao N.
Chem. Rev.
1993,
93:
2207
For reviews, see:
2a
Roush WR. In
Comprehensive Organic Synthesis
Vol. 2:
Trost BM.
Fleming I.
Heathcock CH.
Pergamon;
Oxford:
1991.
p.1
2b
Hoppe D. In
Houben-Weyl: Methods of Organic Chemistry
Vol. E21:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Georg Thieme Verlag;
Stuttgart:
1995.
p.1357
2c
Chemler SR.
Roush WR. In
Modern Carbonyl Chemistry
Otera J.
Wiley-VCH;
Weinheim:
2000.
Chap. 11.
p.403
For reviews, see:
3a
Yanagisawa A. In
Comprehensive Asymmetric Catalysis
Vol. II:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Heidelberg:
1999.
p.965
3b
Denmark SE.
Almstead NG. In
Modern Carbonyl Chemistry
Otera J.
Wiley-VCH;
Weinheim:
2000.
Chap. 10.
p.299
3c
Kennedy JWJ.
Hall DG.
Angew. Chem. Int. Ed.
2003,
42:
4732
3d
Denmark SE.
Fu J.
Chem. Rev.
2003,
103:
2763
3e
Yanagisawa A. In
Comprehensive Asymmetric Catalysis
Suppl. 2:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Heidelberg:
2004.
p.97
4a
Nokami J.
Yoshizane K.
Matsuura H.
Sumida S.
J. Am. Chem. Soc.
1998,
120:
6609
4b
Sumida S.
Ohga M.
Mitani J.
Nokami J.
J. Am. Chem. Soc.
2000,
122:
1310
4c
Nokami J.
Anthony L.
Sumida S.
Chem. Eur. J.
2000,
6:
2909
4d
Nokami J.
J. Synth. Org. Chem., Jpn.
2003,
61:
992
5a
Nokami J.
Ohga M.
Nakamoto H.
Matsubara T.
Hussain I.
Kataoka K.
J. Am. Chem. Soc.
2001,
123:
9168
5b
Nokami J.
Nomiyama K.
Matsuda S.
Imai N.
Kataoka K.
Angew. Chem. Int. Ed.
2003,
42:
1273
5c
Nokami J.
Nomiyama K.
Shafi SM.
Kataoka K.
Org. Lett.
2004,
6:
1261
5d
Shafi SM.
Chou J.
Kataoka K.
Nokami J.
Org. Lett.
2005,
7:
2957
5e
Hussain I.
Komasaka T.
Ohga M.
Nokami J.
Synlett
2002,
640
5f
Kataoka K.
Ode Y.
Matsumoto M.
Nokami J.
Tetrahedron
2006,
62:
2471
For other notable examples of allyl-transfer reactions to aldehydes via [3,3]-sigmatropic rearrangement, see:
6a
Loh T.-P.
Hu Q.-Y.
Ma L.-T.
J. Am. Chem. Soc.
2001,
123:
2450
6b
Loh T.-P.
Tan K.-T.
Hu Q.-Y.
Angew. Chem. Int. Ed.
2001,
40:
2921
6c
Loh T.-P.
Tan K.-T.
Hu Q.-Y.
Tetrahedron Lett.
2001,
42:
8705
6d
Loh T.-P.
Hu Q.-Y.
Chok Y.-K.
Tan K.-T.
Tetrahedron Lett.
2001,
42:
9277
6e
Crosby SR.
Harding JR.
King CD.
Parker GD.
Willis CL.
Org. Lett.
2002,
4:
577
6f
Loh T.-P.
Hu Q.-Y.
Ma L.-T.
Org. Lett.
2002,
4:
2389
6g
Loh T.-P.
Lee C.-LK.
Tan K.-T.
Org. Lett.
2002,
4:
2985
6h
Marumoto S.
Jaber JJ.
Vitale JP.
Rychnovsky SD.
Org. Lett.
2002,
4:
3919
6i
Tan K.-T.
Chng S.-S.
Cheng H.-S.
Loh T.-P.
J. Am. Chem. Soc.
2003,
125:
2958
6j
Cheng H.-S.
Loh T.-P.
J. Am. Chem. Soc.
2003,
125:
4990
6k
Lee C.-LK.
Lee C.-HA.
Tan K.-T.
Loh T.-P.
Org. Lett.
2004,
6:
1282
6l
Lee C.-HA.
Loh T.-P.
Tetrahedron Lett.
2004,
45:
5819
6m
Ramachandran PV.
Pratihar D.
Biswas D.
Chem. Commun.
2005,
1988
6n
Lee C.-HA.
Loh T.-P.
Tetrahedron Lett.
2006,
47:
809
6o
Lee C.-HA.
Loh T.-P.
Tetrahedron Lett.
2006,
47:
1641
6p
Loh T.-P.
Chua G.-L.
J. Synth. Org. Chem., Jpn.
2005,
63:
1137
7a
Hayashi S.
Hirano K.
Yorimitsu H.
Oshima K.
Org. Lett.
2005,
7:
3577 . For other notable examples of allyl-transfer reaction to aldehydes via retro-allylation, see:
7b
Tagliavini G.
Peruzzo V.
Marton D.
Inorg. Chim. Acta
1978,
26:
L41
7c
Peruzzo V.
Tagliavini G.
J. Organomet. Chem.
1978,
162:
37
7d
Jones P.
Millot N.
Knochel P.
Chem. Commun.
1998,
2405
7e
Jones P.
Knochel P.
Chem. Commun.
1998,
2407
7f
Millot N.
Knochel P.
Tetrahedron Lett.
1999,
40:
7779
7g
Jones P.
Knochel P.
J. Org. Chem.
1999,
64:
186
7h
Fujita K.
Yorimitsu H.
Shinokubo H.
Oshima K.
J. Org. Chem.
2004,
69:
3302
7i
Hayashi S.
Hirano K.
Yorimitsu H.
Oshima K.
J. Am. Chem. Soc.
2006,
128:
2210
8a
Yanagisawa A.
Sekiguchi T.
Tetrahedron Lett.
2003,
44:
7163
8b
Yanagisawa A.
Goudu R.
Arai T.
Org. Lett.
2004,
6:
4281
9 Typical experimental procedure for crotyl-transfer reaction to aldehydes catalyzed by dibutyltin oxide (Table
[2]
, Entry 4). Under an argon atmosphere, 4-methoxybenzaldehyde (68.1 mg, 0.50 mmol) was added to a solution of dibutyltin oxide (12.4 mg, 0.05 mmol) and crotyl donor (238 mg, 1.00 mmol) in dry toluene (2 mL) at r.t. After stirring for 30 min the mixture was heated at reflux (oil bath temperature: 125-130 °C) for 24 h and then treated with MeOH (2 mL), brine (2 mL), and solid KF (ca. 2 g) at r.t. for 2 h. The resulting precipitate was filtered off and the filtrate diluted with H2O (30 mL) and extracted with Et2O (3 ¥ 30 mL). The combined organic extracts were washed with brine (20 mL), dried over anhydrous Na2SO4, and concentrated in vacuo after filtration. The residual crude product was purified by column chromatography on silica gel to give a syn/anti mixture of the corresponding homoallylic alcohol (96.0 mg, >99% yield). The syn/anti ratio was determined to be 73:27 by 1H NMR analysis. Spectral data of a 73:27 mixture of the syn and anti isomers: TLC R
f
= 0.17 (hexane-EtOAc, 7:1); 1H NMR (400 MHz, CDCl3): δ = 0.82 (d, J = 7.0 Hz, 0.81 H), 0.99 (d, J = 6.8 Hz, 2.19 H), 2.31 (br s, 1 H), 2.42 (m, 0.27 H), 2.51 (m, 0.73 H), 3.76 (s, 3 H), 4.26 (d, J = 8.0 Hz, 0.27 H), 4.46 (d, J = 5.8 Hz, 0.73 H), 4.97-5.01 (m, 1.46 H), 5.12-5.18 (m, 0.54 H), 5.64-5.74 (m, 0.73 H), 5.74-5.85 (m, 0.27 H), 6.83 (d, J = 8.7 Hz, 1.46 H), 6.85 (d, J = 8.5 Hz, 0.54 H), 7.17 (d, J = 8.7 Hz, 1.46 H), 7.21 (d, J = 8.5 Hz, 0.54 H); 13C NMR (100 MHz, CDCl3): δ = 14.4, 16.4, 44.5, 46.1, 55.0, 55.0, 76.9, 77.3, 113.2, 113.4, 115.1, 116.3, 127.6, 127.8, 134.5, 134.7, 140.2, 140.8, 158.6, 158.9. Spectral data (1H and 13C NMR) of the mixture of the syn and anti isomers indicated good agreement with reported data.
[10]
10
Batey RA.
Thadani AN.
Smil DV.
Lough AJ.
Synthesis
2000,
990