Subscribe to RSS
DOI: 10.1055/s-2006-948198
Dibutyltin Oxide Catalyzed Allyl-Transfer Reaction from Tertiary Homoallylic Alcohols to Aldehydes
Publication History
Publication Date:
09 August 2006 (online)
Abstract
A catalytic allyl-transfer reaction from tertiary homoallylic alcohols to aldehydes was achieved using dibutyltin oxide as a catalyst in toluene under reflux conditions. Various secondary homoallylic alcohols were prepared in high yield (up to 99%). When β-alkylated tertiary homoallylic alcohols were used, branched products were exclusively obtained.
Key words
aldehydes - allylations - organometallic reagents - regioselectivity - tin
- 1
Yamamoto Y.Asao N. Chem. Rev. 1993, 93: 2207 - For reviews, see:
-
2a
Roush WR. In Comprehensive Organic Synthesis Vol. 2:Trost BM.Fleming I.Heathcock CH. Pergamon; Oxford: 1991. p.1 -
2b
Hoppe D. In Houben-Weyl: Methods of Organic Chemistry Vol. E21:Helmchen G.Hoffmann RW.Mulzer J.Schaumann E. Georg Thieme Verlag; Stuttgart: 1995. p.1357 -
2c
Chemler SR.Roush WR. In Modern Carbonyl ChemistryOtera J. Wiley-VCH; Weinheim: 2000. Chap. 11. p.403 - For reviews, see:
-
3a
Yanagisawa A. In Comprehensive Asymmetric Catalysis Vol. II:Jacobsen EN.Pfaltz A.Yamamoto H. Springer; Heidelberg: 1999. p.965 -
3b
Denmark SE.Almstead NG. In Modern Carbonyl ChemistryOtera J. Wiley-VCH; Weinheim: 2000. Chap. 10. p.299 -
3c
Kennedy JWJ.Hall DG. Angew. Chem. Int. Ed. 2003, 42: 4732 -
3d
Denmark SE.Fu J. Chem. Rev. 2003, 103: 2763 -
3e
Yanagisawa A. In Comprehensive Asymmetric Catalysis Suppl. 2:Jacobsen EN.Pfaltz A.Yamamoto H. Springer; Heidelberg: 2004. p.97 -
4a
Nokami J.Yoshizane K.Matsuura H.Sumida S. J. Am. Chem. Soc. 1998, 120: 6609 -
4b
Sumida S.Ohga M.Mitani J.Nokami J. J. Am. Chem. Soc. 2000, 122: 1310 -
4c
Nokami J.Anthony L.Sumida S. Chem. Eur. J. 2000, 6: 2909 -
4d
Nokami J. J. Synth. Org. Chem., Jpn. 2003, 61: 992 -
5a
Nokami J.Ohga M.Nakamoto H.Matsubara T.Hussain I.Kataoka K. J. Am. Chem. Soc. 2001, 123: 9168 -
5b
Nokami J.Nomiyama K.Matsuda S.Imai N.Kataoka K. Angew. Chem. Int. Ed. 2003, 42: 1273 -
5c
Nokami J.Nomiyama K.Shafi SM.Kataoka K. Org. Lett. 2004, 6: 1261 -
5d
Shafi SM.Chou J.Kataoka K.Nokami J. Org. Lett. 2005, 7: 2957 -
5e
Hussain I.Komasaka T.Ohga M.Nokami J. Synlett 2002, 640 -
5f
Kataoka K.Ode Y.Matsumoto M.Nokami J. Tetrahedron 2006, 62: 2471 - For other notable examples of allyl-transfer reactions to aldehydes via [3,3]-sigmatropic rearrangement, see:
-
6a
Loh T.-P.Hu Q.-Y.Ma L.-T. J. Am. Chem. Soc. 2001, 123: 2450 -
6b
Loh T.-P.Tan K.-T.Hu Q.-Y. Angew. Chem. Int. Ed. 2001, 40: 2921 -
6c
Loh T.-P.Tan K.-T.Hu Q.-Y. Tetrahedron Lett. 2001, 42: 8705 -
6d
Loh T.-P.Hu Q.-Y.Chok Y.-K.Tan K.-T. Tetrahedron Lett. 2001, 42: 9277 -
6e
Crosby SR.Harding JR.King CD.Parker GD.Willis CL. Org. Lett. 2002, 4: 577 -
6f
Loh T.-P.Hu Q.-Y.Ma L.-T. Org. Lett. 2002, 4: 2389 -
6g
Loh T.-P.Lee C.-LK.Tan K.-T. Org. Lett. 2002, 4: 2985 -
6h
Marumoto S.Jaber JJ.Vitale JP.Rychnovsky SD. Org. Lett. 2002, 4: 3919 -
6i
Tan K.-T.Chng S.-S.Cheng H.-S.Loh T.-P. J. Am. Chem. Soc. 2003, 125: 2958 -
6j
Cheng H.-S.Loh T.-P. J. Am. Chem. Soc. 2003, 125: 4990 -
6k
Lee C.-LK.Lee C.-HA.Tan K.-T.Loh T.-P. Org. Lett. 2004, 6: 1282 -
6l
Lee C.-HA.Loh T.-P. Tetrahedron Lett. 2004, 45: 5819 -
6m
Ramachandran PV.Pratihar D.Biswas D. Chem. Commun. 2005, 1988 -
6n
Lee C.-HA.Loh T.-P. Tetrahedron Lett. 2006, 47: 809 -
6o
Lee C.-HA.Loh T.-P. Tetrahedron Lett. 2006, 47: 1641 -
6p
Loh T.-P.Chua G.-L. J. Synth. Org. Chem., Jpn. 2005, 63: 1137 -
7a
Hayashi S.Hirano K.Yorimitsu H.Oshima K. Org. Lett. 2005, 7: 3577 . For other notable examples of allyl-transfer reaction to aldehydes via retro-allylation, see: -
7b
Tagliavini G.Peruzzo V.Marton D. Inorg. Chim. Acta 1978, 26: L41 -
7c
Peruzzo V.Tagliavini G. J. Organomet. Chem. 1978, 162: 37 -
7d
Jones P.Millot N.Knochel P. Chem. Commun. 1998, 2405 -
7e
Jones P.Knochel P. Chem. Commun. 1998, 2407 -
7f
Millot N.Knochel P. Tetrahedron Lett. 1999, 40: 7779 -
7g
Jones P.Knochel P. J. Org. Chem. 1999, 64: 186 -
7h
Fujita K.Yorimitsu H.Shinokubo H.Oshima K. J. Org. Chem. 2004, 69: 3302 -
7i
Hayashi S.Hirano K.Yorimitsu H.Oshima K. J. Am. Chem. Soc. 2006, 128: 2210 -
8a
Yanagisawa A.Sekiguchi T. Tetrahedron Lett. 2003, 44: 7163 -
8b
Yanagisawa A.Goudu R.Arai T. Org. Lett. 2004, 6: 4281 - 10
Batey RA.Thadani AN.Smil DV.Lough AJ. Synthesis 2000, 990
References and Notes
Typical experimental procedure for crotyl-transfer reaction to aldehydes catalyzed by dibutyltin oxide (Table [2] , Entry 4). Under an argon atmosphere, 4-methoxybenzaldehyde (68.1 mg, 0.50 mmol) was added to a solution of dibutyltin oxide (12.4 mg, 0.05 mmol) and crotyl donor (238 mg, 1.00 mmol) in dry toluene (2 mL) at r.t. After stirring for 30 min the mixture was heated at reflux (oil bath temperature: 125-130 °C) for 24 h and then treated with MeOH (2 mL), brine (2 mL), and solid KF (ca. 2 g) at r.t. for 2 h. The resulting precipitate was filtered off and the filtrate diluted with H2O (30 mL) and extracted with Et2O (3 ¥ 30 mL). The combined organic extracts were washed with brine (20 mL), dried over anhydrous Na2SO4, and concentrated in vacuo after filtration. The residual crude product was purified by column chromatography on silica gel to give a syn/anti mixture of the corresponding homoallylic alcohol (96.0 mg, >99% yield). The syn/anti ratio was determined to be 73:27 by 1H NMR analysis. Spectral data of a 73:27 mixture of the syn and anti isomers: TLC R f = 0.17 (hexane-EtOAc, 7:1); 1H NMR (400 MHz, CDCl3): δ = 0.82 (d, J = 7.0 Hz, 0.81 H), 0.99 (d, J = 6.8 Hz, 2.19 H), 2.31 (br s, 1 H), 2.42 (m, 0.27 H), 2.51 (m, 0.73 H), 3.76 (s, 3 H), 4.26 (d, J = 8.0 Hz, 0.27 H), 4.46 (d, J = 5.8 Hz, 0.73 H), 4.97-5.01 (m, 1.46 H), 5.12-5.18 (m, 0.54 H), 5.64-5.74 (m, 0.73 H), 5.74-5.85 (m, 0.27 H), 6.83 (d, J = 8.7 Hz, 1.46 H), 6.85 (d, J = 8.5 Hz, 0.54 H), 7.17 (d, J = 8.7 Hz, 1.46 H), 7.21 (d, J = 8.5 Hz, 0.54 H); 13C NMR (100 MHz, CDCl3): δ = 14.4, 16.4, 44.5, 46.1, 55.0, 55.0, 76.9, 77.3, 113.2, 113.4, 115.1, 116.3, 127.6, 127.8, 134.5, 134.7, 140.2, 140.8, 158.6, 158.9. Spectral data (1H and 13C NMR) of the mixture of the syn and anti isomers indicated good agreement with reported data. [10]