References and Notes
1
Ojika M.
Nagoya T.
Yamada K.
Tetrahedron Lett.
1995,
36:
7491
2
Suenaga K.
Nagoya T.
Shibata T.
Kigoshi H.
Yamada K.
J. Nat. Prod.
1997,
60:
155
3
Ohtani I.
Kusumi T.
Kashman Y.
Kakisawa H.
J. Am. Chem. Soc.
1991,
113:
4092
4a C16-C24: Grimaud L.
de Mesmay R.
Prunet J.
Org. Lett.
2002,
4:
419
4b C15-C24 and C25-C30: Desroy N.
Le Roux R.
Phansavath P.
Chiummiento L.
Bonini C.
Genêt J.-P.
Tetrahedron Lett.
2003,
44:
1763
4c C1-C13: Le Roux R.
Desroy N.
Phansavath P.
Genêt J.-P.
Synlett
2005,
429
4d C15-C30: Schmidt DR.
Park PK.
Leighton JL.
Org. Lett.
2003,
5:
3535
4e C1-C13: Keck GE.
McLaws MD.
Tetrahedron Lett.
2005,
46:
4911
5
Park PK.
O’Malley SJ.
Schmidt DR.
Leighton JL.
J. Am. Chem. Soc.
2006,
128:
2796
6
Evans DA.
Gauchet-Prunet JA.
J. Org. Chem.
1993,
58:
2446
7
Lowik DWPM.
Liskamp RMJ.
Eur. J. Org. Chem.
2000,
1219
8a
Chow S.
Kitching W.
Tetrahedron: Asymmetry
2002,
13:
779
8b
Jacobsen EN.
Acc. Chem. Res.
2000,
33:
421
9a
Scholl M.
Ding S.
Lee CW.
Grubbs RH.
Org. Lett.
1999,
1:
953
9b
Chatterjee AK.
Grubbs RH.
Angew. Chem. Int. Ed.
2002,
41:
3172
10 The key step of the synthesis of amide 13 is an Evans aldol reaction with an aldehyde derived from the Roche ester: Clark DL.
Heathcock CH.
J. Org. Chem.
1993,
58:
5878
11
Evans DA.
Coleman PJ.
Côté B.
J. Org. Chem.
1997,
62:
788
12a
Ozawa T.
Aoyagi S.
Kibayashi C.
J. Org. Chem.
2001,
66:
3338
12b
Barton DHR.
Dorchak J.
Jaszberenyi JCs.
Tetrahedron
1992,
48:
7435
13
Vincent A.
Prunet J.
Tetrahedron Lett.
2006,
47:
4075
14
Frigerio M.
Santagostino M.
Sputore S.
J. Org. Chem.
1999,
64:
4537
15a
Ohira S.
Synth. Commun.
1989,
19:
561
15b
Müller S.
Liepold B.
Roth GJ.
Bestmann HJ.
Synlett
1996,
521
15c
Davies HML.
Cantrell WR.
Romines KR.
Baum JS.
Org. Synth.
1992,
70:
93
16
Negishi E.-i.
Van Horn DE.
Yoshida T.
J. Am. Chem. Soc.
1985,
107:
6639
17
Wipf P.
Lim S.
Angew. Chem. Int. Ed.
1993,
32:
1068
18a
Barbero A.
Cuadrado P.
Fleming I.
Gonzalez AM.
Pulido FJ.
Sanchez A.
J. Chem. Soc., Perkin Trans. 1
1995,
1525
18b
Fleming I.
Newton T.
Roessler F.
J. Chem. Soc., Perkin Trans. 1
1981,
2527
19
Uenishi J.
Kawahama R.
Yonemitsu O.
J. Org. Chem.
1997,
62:
1691 ; this reaction was performed on a model compound
20
Takai K.
Nitta K.
Utimoto K.
J. Am. Chem. Soc.
1986,
108:
7408
21 This reaction has not been optimized.
22
Morrill C.
Grubbs RH.
J. Org. Chem.
2003,
68:
6031
23 Spectroscopic data for compound 23: 1H NMR (400 MHz, CDCl3): δ = 7.51 (dd, J = 7.9, 1.5 Hz, 2 H, Ph), 7.35-7.40 (m, 3 H, Ph), 7.27 (d, J = 8.6 Hz, 2 H, PMB), 6.86 (d, J = 8.6 Hz, 2 H, PMB), 5.94 (dd, J = 2.1, 1.3 Hz, 1 H, CH-15), 5.48 (s, 1 H, CHPh), 4.53 (d, J = 10.8 Hz, 1 H, CHHPh), 4.49 (d, J = 11.0 Hz, 1 H, CHHPh), 3.98-4.18 (m, 2 H, CH-7, CH-9), 3.78-3.82 (m, 1 H, CH-11), 3.79 (s, 3 H, OCH3), 3.72 (dd, J = 9.6, 5.2 Hz, 1 H, CH-1), 3.63 (dd, J = 9.6, 3.0 Hz, 1 H, CH-1), 3.27 (dd, J = 8.7, 2.2 Hz, 1 H, CH-3), 2.35-2.48 (m, 2 H, CH2-13), 1.87 (d, J = 1.2 Hz, 3 H, CH3-14), 1.78-1.84 (m, 2 H, CH-2, CH-12), 1.30-1.75 (m, 10 H, CH-4, CH2-5, CH2-6, CH2-8, CH2-10, CH-12), 0.89-0.97 [m, 24 H, SiC(CH3)3, CH3-2, CH3-4], 0.09, 0.08, 0.06 [s, 12 H, Si(CH3)2]. 13C NMR (100 MHz, CDCl3): δ = 147.6 (C-14), 158.9, 138.9, 131.6, 129.1, 128.5, 128.1, 126.0, 113.7 (Ar), 100.2 (CHPh), 83.6 (C-3), 75.9 (C-11), 74.9 (C-15), 74.5 (CH2Ph), 73.0 (C-9), 67.9 (C-7), 65.0 (C-1), 55.3 (OCH3), 43.3 (C-6), 38.6 (C-2), 37.5 (C-10), 36.3 (C-8), 35.6 (C-4), 35.1 (C-13), 33.9 (C-12), 29.6 (C-5), 26.0 [SiC(CH3)3], 24.0 (CH3-14), 18.3, 18.1 (SiC), 14.7 (CH3-2), 13.5 (CH3-4), -4.1, -4.5, -5.3, -5.4 [Si(CH3)2]. HRMS (EI): m/z calcd for C45H75O6I1Si2: 894.4147; found: 894.4155.