Abstract
A range of aromatic organocopper or organomagnesium compounds undergo smooth cross-coupling reactions with aryl bromides, chlorides, fluorides and tosylates, leading to polyfunctionalized aromatics or heterocycles in the presence of cobalt salts (5-7.5 mol%) as catalysts. Very mild reaction conditions are needed and, in the case of cross-coupling with organocopper compounds, Bu4 NI (1 equiv) and 4-fluorostyrene (20 mol%) are essential as promoters for successful couplings.
Key words
cross-coupling - transition metals - magnesium - heterocycles - halides
References
1a
Metal Catalyzed Cross -Coupling Reactions
2nd ed.:
de Meijere A.
Diederich F.
Wiley-VCH;
Weinheim:
2004.
1b
Handbook of Organopalladium Chemistry for Organic Synthesis
Negishi E.
Wiley-Interscience;
New York:
2002.
1c
Transition Metals for Organic Synthesis
2nd ed.:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
2004.
2
Beller M.
Zapf A.
Mägerlein W.
Chem. Eng. Technol.
2001,
24:
575
3a
Tan Z.
Negishi E.
Synthesis of natural products via palladium-catalyzed cross-coupling , In Handbook of Organopalladium Chemistry for Organic Synthesis
Negishi E.
Wiley-Interscience;
New York:
2002.
p.863
3b
Nicolaou KC.
Bulger PG.
Sarlah D.
Angew. Chem. Int. Ed.
2005,
44:
4442
4a
Tamura M.
Kochi JK.
J. Am. Chem. Soc.
1971,
93:
1487
4b
Tamura M.
Kochi JK.
Synthesis
1971,
93:
303
4c
Kochi JK.
Acc. Chem. Res.
1974,
7:
351
4d
Neumann S.
Kochi JK.
J. Org. Chem.
1975,
40:
599
4e
Smith RS.
Kochi JK.
J. Org. Chem.
1976,
41:
502
5a
Cahiez G.
Marquais S.
Pure Appl. Chem.
1996,
68:
669
5b
Cahiez G.
Marquais S.
Tetrahedron Lett.
1996,
37:
1773
5c
Cahiez G.
Avedissian H.
Synthesis
1998,
1199
5d
Cahiez G.
Chaboche C.
Mahuteau-Betzer F.
Ahr M.
Org. Lett.
2005,
7:
1943
6a
Fürstner A.
Leitner A.
Méndez M.
Krause H.
J. Am. Chem. Soc.
2002,
124:
13856
6b
Fürstner A.
Leitner A.
Angew. Chem. Int. Ed.
2002,
41:
609
6c
Fürstner A.
Leitner A.
Angew. Chem. Int. Ed.
2003,
42:
308
6d
Scheiper B.
Bonnekessel M.
Krause H.
Fürstner A.
J. Org. Chem.
2004,
69:
3943
6e
Martin R.
Fürstner A.
Angew. Chem. Int. Ed.
2004,
43:
3955
6f
Fürstner A.
Martin R.
Majima K.
J. Am. Chem. Soc.
2005,
127:
12236
7a
Nakamura M.
Hirai A.
Nakamura E.
J. Am. Chem. Soc.
2001,
122:
978
7b
Nakamura M.
Matsuo K.
Ito S.
Nakamura E.
J. Am. Chem. Soc.
2004,
126:
3686
7c
Nakamura M.
Ito S.
Matsuo K.
Nakamura E.
Synlett
2005,
1794
8a
Nagano T.
Hayashi T.
Org. Lett.
2004,
6:
1297
8b
Nagano T.
Hayashi T.
Org. Lett.
2005,
7:
491
9a
Bedford RB.
Bruce DW.
Frost RM.
Goodby JW.
Hird M.
Chem. Commun.
2004,
2822
9b
Bedford RB.
Bruce DW.
Frost RM.
Hird M.
Chem. Commun.
2005,
4161
10a For a review on iron-catalyzed reactions, see: Bolm C.
Legros J.
Le Paih J.
Zani L.
Chem. Rev.
2004,
104:
6217
10b
Molander G.
Rahn B.
Shubert DC.
Bonde SE.
Tetrahedron Lett.
1983,
24:
5449
10c
Dohle W.
Kopp F.
Cahiez G.
Knochel P.
Synlett
2001,
1901
10d
Hojo M.
Murakami Y.
Aihara H.
Sakuragi R.
Baba Y.
Hosomi A.
Angew. Chem. Int. Ed.
2001,
40:
621
10e
Fakhfakh MA.
Franck X.
Hocquemiller R.
Figadère B.
J. Organomet. Chem.
2001,
624:
131
10f
Hölzer B.
Hoffmann RW.
Chem. Commun.
2003,
732
10g
Shinokubo H.
Oshima K.
Eur. J. Org. Chem.
2004,
2081
11
Sapountzis I.
Lin W.
Kofink CC.
Despotopoulou C.
Knochel P.
Angew. Chem. Int. Ed.
2005,
44:
1654
12a
Kharasch MS.
Fuchs CF.
J. Am. Chem. Soc.
1943,
65:
504
12b
Kharasch MS.
Fuchs CF.
J. Org. Chem.
1945,
10: 292
12c
Kharasch MS.
Urry WH.
J. Org. Chem.
1948,
13:
101
13a
Cahiez G.
Avedissian H.
Tetrahedron Lett.
1998,
39:
6159
13b
Avedissian H.
Bérillon L.
Cahiez G.
Knochel P.
Tetrahedron Lett.
1998,
39:
6163
14a For a review, see: Shinokubo H.
Oshima K.
Eur. J. Org. Chem.
2004,
2081
14b
Fujioka T.
Nakamura T.
Yorimitsu H.
Oshima K.
Org. Lett.
2002,
4:
2257
14c
Tsuji T.
Yorimitsu H.
Oshima K.
Angew. Chem. Int. Ed.
2002,
41:
4137
14d
Wakabayashi K.
Yorimitsu H.
Oshima K.
J. Am. Chem. Soc.
2001,
123:
5374
14e
Ohmiya H.
Tsuji T.
Yorimitsu H.
Oshima K.
Chem. Eur. J.
2004,
10:
5640
14f
Ikeda Y.
Nakamura T.
Yorimitsu H.
Oshima K.
J. Am. Chem. Soc.
2002,
124:
6514
14g
Mizutani K.
Shinokubo H.
Oshima K.
Org. Lett.
2003,
5:
3959
14h
Ohmiya H.
Yorimitsu H.
Oshima K.
Chem. Lett.
2004,
33:
1240
14i
Ohmiya H.
Yorimitsu H.
Oshima K.
Angew. Chem. Int. Ed.
2005,
44:
2368
14j
Ohmiya H.
Yorimitsu H.
Oshima K.
Angew. Chem. Int. Ed.
2005,
44:
3488
14k
Ohmiya H.
Yorimitsu H.
Oshima K.
J. Am. Chem. Soc.
2006,
128:
1886
15a
Gomes P.
Gosmini C.
Périchon J.
Org. Lett.
2003,
5:
1043
15b
Gomes P.
Gosmini C.
Périchon J.
Synthesis
2003,
1909
15c
Amatore M.
Gosmini C.
Périchon J.
Eur. J. Org. Chem.
2005,
989
16
Korn TJ.
Cahiez G.
Knochel P.
Synlett
2003,
1892
17
Korn TJ.
Knochel P.
Angew. Chem. Int. Ed.
2005,
44:
2947
18
Korn TJ.
Schade MA.
Wirth S.
Knochel P.
Org. Lett.
2006,
8:
725
19 In the absence of the cobalt catalyst, full conversion (GC) was detected only after four days at room temperature.
For the preparation of functionalized arylmagnesium compounds, see:
20a
Knochel P.
Dohle W.
Gommermann N.
Kneisel FF.
Kopp F.
Korn T.
Sapountzis I.
Vu VA.
Angew. Chem. Int. Ed.
2003,
42:
4302
20b
Knochel P.
Krasovskiy A.
Sapountzis I.
Polyfunctional Magnesium Organometallics for Organic Synthesis , In Handbook of Functionalized Organometallics
Knochel P.
Wiley-VCH;
Weinheim:
2005.
p.109
21 Commercial cobalt powder was used (Aldrich, 99.9+% purity).
22 Commercial iron powder was used (Merck, ≥99.5% purity).
23a
Lipshutz BH.
Sengupta S.
Org. React.
1992,
41:
135
23b
Taylor RJK.
Organocopper Reagents
Oxford University Press;
Oxford:
1994.
23c
Krause N.
Modern Organocopper Chemistry
Wiley-VCH;
Weinheim:
2002.
24a
Knochel P.
Yeh MCP.
Berk SC.
Talbert J.
J. Org. Chem.
1988,
53:
2390
24b Besides CuCN·2LiCl, CuBr·2LiCl and CuSCN·2LiCl were also used for transmetalation, but CuCN·2LiCl gave better results
25 After 24 hours reaction time only 47% conversion was observed.
26a
Piber M.
Jensen AE.
Rottländer M.
Knochel P.
Org. Lett.
1999,
1:
1323
26b
Wright SW.
Hageman DL.
McClure LD.
J. Org. Chem.
1994,
59:
6095
26c
Nguefack J.-F.
Bollit V.
Sinou D.
Tetrahedron Lett.
1996,
37:
5527
26d
Powell NA.
Rychnovsky SD.
Tetrahedron Lett.
1996,
37:
7901
26e
Nakamura K.
Okubo H.
Yamaguchi M.
Synlett
1999,
549
26f
Herrmann WA.
Brossmer C.
Reisinger C.-P.
Riermeier TH.
Öfele K.
Beller M.
Chem. Eur. J.
1997,
3:
1357
27
Jensen AE.
Knochel P.
J. Org. Chem.
2002,
67:
79
28 29% conversion was observed after four hours and 42% conversion after 21 hours reaction time at 80 °C.
29 Besides DMPU, NMP and N ,N -dimethylacetamide (DMAC) also led to a rate acceleration, but DMPU showed the strongest effect.
30 For the preparation of benzofuranyllithium, see: Brown HC.
Gupta AK.
Prasad JVNV.
Bull. Soc. Chem. Jpn.
1988,
61:
93
31 For the preparation of ferrocenyllithium, see: Guillaneux D.
Kagan HB.
J. Org. Chem.
1995,
60:
2502
32
Nicolaou KC.
Sorensen EJ.
Classics in Total Synthesis
Wiley-VCH;
Weinheim:
1996.
33 Confirmed by HMBC-NMR analysis.
34 For a review on Pd-catalyzed cross-coupling reactions with aryl chlorides, see: Littke AF.
Fu GC.
Angew. Chem. Int. Ed.
2002,
41:
4176
Selected examples:
35a
Dankwardt JW.
J. Organomet. Chem.
2005,
690:
932 ; and references cited therein
35b
Bahmanyar S.
Borer BC.
Kim YM.
Kurtz DM.
Yu S.
Org. Lett.
2005,
7:
1011
35c
Saeki T.
Takashima Y.
Tamao K.
Synlett
2005,
1771
35d
Ackermann L.
Born R.
Spatz JH.
Meyer D.
Angew. Chem. Int. Ed.
2005,
44:
7216
36a
Richmond TG.
Angew. Chem. Int. Ed.
2000,
39:
3241
36b
Braun T.
Perutz RN.
Chem. Commun.
2002,
2749
37 No full conversion was observed if only 1.7 or 2 equivalents of copper reagent were used. In the absence of the cobalt-catalyst, no product was detected even after two days.
38 A mixture of mono- and two-fold cross-coupling product was obtained if only three equivalents of the arylcopper reagents 5l or 5i was used.
Selected examples:
39a
Terao J.
Watanabe H.
Ikumi A.
Kuniyasu H.
Kambe N.
J. Am. Chem. Soc.
2002,
124:
4222
39b
Netherton MR.
Fu GC.
Angew. Chem. Int. Ed.
2002,
41:
3910
39c
Huang X.
Anderson KW.
Zim D.
Jiang L.
Klapars A.
Buchwald SL.
J. Am. Chem. Soc.
2003,
125:
6653
39d
Tang Z.-Y.
Hu Q.-S.
J. Am. Chem. Soc.
2004,
126:
3058 ; and references cited therein
39e
Limmert ME.
Roy AH.
Hartwig JF.
J. Org. Chem.
2005,
70:
9364 ; and references cited therein
40
Wagner PJ.
Sedon JH.
Gudmundsdottir A.
J. Am. Chem. Soc.
1996,
118:
746
41
Ireland T.
Tappe K.
Grossheimann G.
Knochel P.
Chem. Eur. J.
2002,
8:
843
42
Moldenhauer G.
Trautmann G.
Irion W.
Pfluger R.
Döser H.
Mastaglio D.
Marwitz H.
Justus Liebigs Ann. Chem.
1953,
580:
169
43
Susumu K.
Takenori NR.
Hara H.
Fujii M.
Koutoku H.
Oritani H.
Mase T.
Chem. Pharm. Bull.
1999,
47:
1073
44
Tunney SE.
Stille JK.
J. Org. Chem.
1987,
52:
748
45a
Angu K.
Fuchibe K.
Akiyama T.
Org. Lett.
2004,
3:
353
45b
Egi M.
Liebeskind LS.
Org. Lett.
2003,
6:
801
45c
Banwell MG.
Lupton DW.
Ma X.
Renner J.
Sydnes MGO.
Org. Lett.
2004,
16:
2741
45d
Ackerman L.
Born R.
Angew. Chem. Int. Ed.
2005,
16:
2444
45e
Adjabeng G.
Brenstrum T.
Wilson J.
Frampton C.
Al R.
Hillhouse J.
McNulty J.
Capretta A.
Org. Lett.
2003,
6:
953
45f
Wang L.
Zhang Y.
Liu L.
Wang Y.
J. Org. Chem.
2006,
3:
1284
45g
Song F.
Hilaire VRS.
White EH.
Org. Lett.
1999,
12:
1957
45h
Nelly L.
Alain T.
Couture K.
Queguiner G.
J. Org. Chem.
1995,
12:
3781
46a
Gavryushin A.
Kofink C.
Manolikakes G.
Knochel P.
Org. Lett.
2005,
22:
4871
46b
Klement I.
Rottlaender M.
Tucker CE.
Majid TN.
Knochel P.
Venegas P.
Cahiez G.
Tetrahedron
1996,
21:
7201
46c
Alam N.
Amatore C.
Combellas C.
Pinson J.
Saveant MJ.
Thiebault A.
Noel VJ.
J.Org. Chem.
1988,
53:
1496
47
Sapountzis I.
Lin W.
Kofink C.
Despotopoulou C.
Knochel P.
Angew. Chem. Int. Ed.
2005,
11:
1654