Subscribe to RSS
DOI: 10.1055/s-2006-950290
Cobalt-Catalyzed Cross-Coupling Reactions of Heterocyclic Chlorides with Arylmagnesium Halides and of Polyfunctionalized Arylcopper Reagents with Aryl Bromides, Chlorides, Fluorides and Tosylates
Publication History
Publication Date:
12 October 2006 (online)
Abstract
A range of aromatic organocopper or organomagnesium compounds undergo smooth cross-coupling reactions with aryl bromides, chlorides, fluorides and tosylates, leading to polyfunctionalized aromatics or heterocycles in the presence of cobalt salts (5-7.5 mol%) as catalysts. Very mild reaction conditions are needed and, in the case of cross-coupling with organocopper compounds, Bu4NI (1 equiv) and 4-fluorostyrene (20 mol%) are essential as promoters for successful couplings.
Key words
cross-coupling - transition metals - magnesium - heterocycles - halides
-
1a
Metal Catalyzed Cross-Coupling Reactions
2nd ed.:
de Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. -
1b
Handbook of Organopalladium Chemistry for Organic Synthesis
Negishi E. Wiley-Interscience; New York: 2002. -
1c
Transition Metals for Organic Synthesis
2nd ed.:
Beller M.Bolm C. Wiley-VCH; Weinheim: 2004. - 2
Beller M.Zapf A.Mägerlein W. Chem. Eng. Technol. 2001, 24: 575 -
3a
Tan Z.Negishi E. Synthesis of natural products via palladium-catalyzed cross-coupling, In Handbook of Organopalladium Chemistry for Organic SynthesisNegishi E. Wiley-Interscience; New York: 2002. p.863 -
3b
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4442 -
4a
Tamura M.Kochi JK. J. Am. Chem. Soc. 1971, 93: 1487 -
4b
Tamura M.Kochi JK. Synthesis 1971, 93: 303 -
4c
Kochi JK. Acc. Chem. Res. 1974, 7: 351 -
4d
Neumann S.Kochi JK. J. Org. Chem. 1975, 40: 599 -
4e
Smith RS.Kochi JK. J. Org. Chem. 1976, 41: 502 -
5a
Cahiez G.Marquais S. Pure Appl. Chem. 1996, 68: 669 -
5b
Cahiez G.Marquais S. Tetrahedron Lett. 1996, 37: 1773 -
5c
Cahiez G.Avedissian H. Synthesis 1998, 1199 -
5d
Cahiez G.Chaboche C.Mahuteau-Betzer F.Ahr M. Org. Lett. 2005, 7: 1943 -
6a
Fürstner A.Leitner A.Méndez M.Krause H. J. Am. Chem. Soc. 2002, 124: 13856 -
6b
Fürstner A.Leitner A. Angew. Chem. Int. Ed. 2002, 41: 609 -
6c
Fürstner A.Leitner A. Angew. Chem. Int. Ed. 2003, 42: 308 -
6d
Scheiper B.Bonnekessel M.Krause H.Fürstner A. J. Org. Chem. 2004, 69: 3943 -
6e
Martin R.Fürstner A. Angew. Chem. Int. Ed. 2004, 43: 3955 -
6f
Fürstner A.Martin R.Majima K. J. Am. Chem. Soc. 2005, 127: 12236 -
7a
Nakamura M.Hirai A.Nakamura E. J. Am. Chem. Soc. 2001, 122: 978 -
7b
Nakamura M.Matsuo K.Ito S.Nakamura E. J. Am. Chem. Soc. 2004, 126: 3686 -
7c
Nakamura M.Ito S.Matsuo K.Nakamura E. Synlett 2005, 1794 -
8a
Nagano T.Hayashi T. Org. Lett. 2004, 6: 1297 -
8b
Nagano T.Hayashi T. Org. Lett. 2005, 7: 491 -
9a
Bedford RB.Bruce DW.Frost RM.Goodby JW.Hird M. Chem. Commun. 2004, 2822 -
9b
Bedford RB.Bruce DW.Frost RM.Hird M. Chem. Commun. 2005, 4161 -
10a For a review on iron-catalyzed reactions, see:
Bolm C.Legros J.Le Paih J.Zani L. Chem. Rev. 2004, 104: 6217 -
10b
Molander G.Rahn B.Shubert DC.Bonde SE. Tetrahedron Lett. 1983, 24: 5449 -
10c
Dohle W.Kopp F.Cahiez G.Knochel P. Synlett 2001, 1901 -
10d
Hojo M.Murakami Y.Aihara H.Sakuragi R.Baba Y.Hosomi A. Angew. Chem. Int. Ed. 2001, 40: 621 -
10e
Fakhfakh MA.Franck X.Hocquemiller R.Figadère B. J. Organomet. Chem. 2001, 624: 131 -
10f
Hölzer B.Hoffmann RW. Chem. Commun. 2003, 732 -
10g
Shinokubo H.Oshima K. Eur. J. Org. Chem. 2004, 2081 - 11
Sapountzis I.Lin W.Kofink CC.Despotopoulou C.Knochel P. Angew. Chem. Int. Ed. 2005, 44: 1654 -
12a
Kharasch MS.Fuchs CF. J. Am. Chem. Soc. 1943, 65: 504 -
12b
Kharasch MS.Fuchs CF. J. Org. Chem. 1945, 10: 292 -
12c
Kharasch MS.Urry WH. J. Org. Chem. 1948, 13: 101 -
13a
Cahiez G.Avedissian H. Tetrahedron Lett. 1998, 39: 6159 -
13b
Avedissian H.Bérillon L.Cahiez G.Knochel P. Tetrahedron Lett. 1998, 39: 6163 -
14a For a review, see:
Shinokubo H.Oshima K. Eur. J. Org. Chem. 2004, 2081 -
14b
Fujioka T.Nakamura T.Yorimitsu H.Oshima K. Org. Lett. 2002, 4: 2257 -
14c
Tsuji T.Yorimitsu H.Oshima K. Angew. Chem. Int. Ed. 2002, 41: 4137 -
14d
Wakabayashi K.Yorimitsu H.Oshima K. J. Am. Chem. Soc. 2001, 123: 5374 -
14e
Ohmiya H.Tsuji T.Yorimitsu H.Oshima K. Chem. Eur. J. 2004, 10: 5640 -
14f
Ikeda Y.Nakamura T.Yorimitsu H.Oshima K. J. Am. Chem. Soc. 2002, 124: 6514 -
14g
Mizutani K.Shinokubo H.Oshima K. Org. Lett. 2003, 5: 3959 -
14h
Ohmiya H.Yorimitsu H.Oshima K. Chem. Lett. 2004, 33: 1240 -
14i
Ohmiya H.Yorimitsu H.Oshima K. Angew. Chem. Int. Ed. 2005, 44: 2368 -
14j
Ohmiya H.Yorimitsu H.Oshima K. Angew. Chem. Int. Ed. 2005, 44: 3488 -
14k
Ohmiya H.Yorimitsu H.Oshima K. J. Am. Chem. Soc. 2006, 128: 1886 -
15a
Gomes P.Gosmini C.Périchon J. Org. Lett. 2003, 5: 1043 -
15b
Gomes P.Gosmini C.Périchon J. Synthesis 2003, 1909 -
15c
Amatore M.Gosmini C.Périchon J. Eur. J. Org. Chem. 2005, 989 - 16
Korn TJ.Cahiez G.Knochel P. Synlett 2003, 1892 - 17
Korn TJ.Knochel P. Angew. Chem. Int. Ed. 2005, 44: 2947 - 18
Korn TJ.Schade MA.Wirth S.Knochel P. Org. Lett. 2006, 8: 725 - For the preparation of functionalized arylmagnesium compounds, see:
-
20a
Knochel P.Dohle W.Gommermann N.Kneisel FF.Kopp F.Korn T.Sapountzis I.Vu VA. Angew. Chem. Int. Ed. 2003, 42: 4302 -
20b
Knochel P.Krasovskiy A.Sapountzis I. Polyfunctional Magnesium Organometallics for Organic Synthesis, In Handbook of Functionalized OrganometallicsKnochel P. Wiley-VCH; Weinheim: 2005. p.109 -
23a
Lipshutz BH.Sengupta S. Org. React. 1992, 41: 135 -
23b
Taylor RJK. Organocopper Reagents Oxford University Press; Oxford: 1994. -
23c
Krause N. Modern Organocopper Chemistry Wiley-VCH; Weinheim: 2002. -
24a
Knochel P.Yeh MCP.Berk SC.Talbert J. J. Org. Chem. 1988, 53: 2390 -
24b
Besides CuCN·2LiCl, CuBr·2LiCl and CuSCN·2LiCl were also used for transmetalation, but CuCN·2LiCl gave better results
-
26a
Piber M.Jensen AE.Rottländer M.Knochel P. Org. Lett. 1999, 1: 1323 -
26b
Wright SW.Hageman DL.McClure LD. J. Org. Chem. 1994, 59: 6095 -
26c
Nguefack J.-F.Bollit V.Sinou D. Tetrahedron Lett. 1996, 37: 5527 -
26d
Powell NA.Rychnovsky SD. Tetrahedron Lett. 1996, 37: 7901 -
26e
Nakamura K.Okubo H.Yamaguchi M. Synlett 1999, 549 -
26f
Herrmann WA.Brossmer C.Reisinger C.-P.Riermeier TH.Öfele K.Beller M. Chem. Eur. J. 1997, 3: 1357 - 27
Jensen AE.Knochel P. J. Org. Chem. 2002, 67: 79 - 30 For the preparation of benzofuranyllithium, see:
Brown HC.Gupta AK.Prasad JVNV. Bull. Soc. Chem. Jpn. 1988, 61: 93 - 31 For the preparation of ferrocenyllithium, see:
Guillaneux D.Kagan HB. J. Org. Chem. 1995, 60: 2502 - 32
Nicolaou KC.Sorensen EJ. Classics in Total Synthesis Wiley-VCH; Weinheim: 1996. - 34 For a review on Pd-catalyzed cross-coupling reactions with aryl chlorides, see:
Littke AF.Fu GC. Angew. Chem. Int. Ed. 2002, 41: 4176 - Selected examples:
-
35a
Dankwardt JW. J. Organomet. Chem. 2005, 690: 932 ; and references cited therein -
35b
Bahmanyar S.Borer BC.Kim YM.Kurtz DM.Yu S. Org. Lett. 2005, 7: 1011 -
35c
Saeki T.Takashima Y.Tamao K. Synlett 2005, 1771 -
35d
Ackermann L.Born R.Spatz JH.Meyer D. Angew. Chem. Int. Ed. 2005, 44: 7216 -
36a
Richmond TG. Angew. Chem. Int. Ed. 2000, 39: 3241 -
36b
Braun T.Perutz RN. Chem. Commun. 2002, 2749 - Selected examples:
-
39a
Terao J.Watanabe H.Ikumi A.Kuniyasu H.Kambe N. J. Am. Chem. Soc. 2002, 124: 4222 -
39b
Netherton MR.Fu GC. Angew. Chem. Int. Ed. 2002, 41: 3910 -
39c
Huang X.Anderson KW.Zim D.Jiang L.Klapars A.Buchwald SL. J. Am. Chem. Soc. 2003, 125: 6653 -
39d
Tang Z.-Y.Hu Q.-S. J. Am. Chem. Soc. 2004, 126: 3058 ; and references cited therein -
39e
Limmert ME.Roy AH.Hartwig JF. J. Org. Chem. 2005, 70: 9364 ; and references cited therein - 40
Wagner PJ.Sedon JH.Gudmundsdottir A. J. Am. Chem. Soc. 1996, 118: 746 - 41
Ireland T.Tappe K.Grossheimann G.Knochel P. Chem. Eur. J. 2002, 8: 843 - 42
Moldenhauer G.Trautmann G.Irion W.Pfluger R.Döser H.Mastaglio D.Marwitz H. Justus Liebigs Ann. Chem. 1953, 580: 169 - 43
Susumu K.Takenori NR.Hara H.Fujii M.Koutoku H.Oritani H.Mase T. Chem. Pharm. Bull. 1999, 47: 1073 - 44
Tunney SE.Stille JK. J. Org. Chem. 1987, 52: 748 -
45a
Angu K.Fuchibe K.Akiyama T. Org. Lett. 2004, 3: 353 -
45b
Egi M.Liebeskind LS. Org. Lett. 2003, 6: 801 -
45c
Banwell MG.Lupton DW.Ma X.Renner J.Sydnes MGO. Org. Lett. 2004, 16: 2741 -
45d
Ackerman L.Born R. Angew. Chem. Int. Ed. 2005, 16: 2444 -
45e
Adjabeng G.Brenstrum T.Wilson J.Frampton C.Al R.Hillhouse J.McNulty J.Capretta A. Org. Lett. 2003, 6: 953 -
45f
Wang L.Zhang Y.Liu L.Wang Y. J. Org. Chem. 2006, 3: 1284 -
45g
Song F.Hilaire VRS.White EH. Org. Lett. 1999, 12: 1957 -
45h
Nelly L.Alain T.Couture K.Queguiner G. J. Org. Chem. 1995, 12: 3781 -
46a
Gavryushin A.Kofink C.Manolikakes G.Knochel P. Org. Lett. 2005, 22: 4871 -
46b
Klement I.Rottlaender M.Tucker CE.Majid TN.Knochel P.Venegas P.Cahiez G. Tetrahedron 1996, 21: 7201 -
46c
Alam N.Amatore C.Combellas C.Pinson J.Saveant MJ.Thiebault A.Noel VJ. J.Org. Chem. 1988, 53: 1496 - 47
Sapountzis I.Lin W.Kofink C.Despotopoulou C.Knochel P. Angew. Chem. Int. Ed. 2005, 11: 1654
References
In the absence of the cobalt catalyst, full conversion (GC) was detected only after four days at room temperature.
21Commercial cobalt powder was used (Aldrich, 99.9+% purity).
22Commercial iron powder was used (Merck, ≥99.5% purity).
25After 24 hours reaction time only 47% conversion was observed.
2829% conversion was observed after four hours and 42% conversion after 21 hours reaction time at 80 °C.
29Besides DMPU, NMP and N,N-dimethylacetamide (DMAC) also led to a rate acceleration, but DMPU showed the strongest effect.
33Confirmed by HMBC-NMR analysis.
37No full conversion was observed if only 1.7 or 2 equivalents of copper reagent were used. In the absence of the cobalt-catalyst, no product was detected even after two days.
38A mixture of mono- and two-fold cross-coupling product was obtained if only three equivalents of the arylcopper reagents 5l or 5i was used.