References and Notes
<A NAME="RG19106ST-1">1</A>
Raimundo J.-M.
Blanchard P.
Gallego-Planas N.
Mercier N.
Ledoux-Rak I.
Hierle R.
Roncali J.
J. Org. Chem.
2002,
67:
205
<A NAME="RG19106ST-2A">2a</A>
Greenwald Y.
Poplawski J.
Ehrenfreund E.
Speiser S.
Synth. Met.
1997,
85:
1353
<A NAME="RG19106ST-2B">2b</A>
Semenikhin OA.
Ovsyannikava EV.
Alpatova NM.
Rotenberg ZA.
Kazarinov VE.
J. Electroanal. Chem.
1999,
463:
190
<A NAME="RG19106ST-3">3</A>
Huang B.
Li J.
Jiang Z.
Qin J.
Yu G.
Liu Y.
Macromolecules
2005,
38:
6915
<A NAME="RG19106ST-4">4</A>
Mitschke U.
Osteritz EM.
Debaerdemaeker T.
Sokolowski M.
Bauerle P.
Chem. Eur. J.
1998,
4:
2211
<A NAME="RG19106ST-5A">5a</A>
Blenkle M.
Boldt P.
Bräuchle C.
Grahn W.
Ledoux I.
Nerenz H.
Stadler S.
Wichern J.
Zyss J.
J. Chem. Soc., Perkin Trans. 2
1996,
1377
<A NAME="RG19106ST-5B">5b</A>
Boldt P.
Blenkle M.
Cabrera I.
Lupo W.
Hickel W.
Nonlinear Opt.
1994,
8:
173
<A NAME="RG19106ST-6">6</A>
Albota M.
Betjonne D.
Bredas J.-J.
Ehrlich JE.
Fu J.-Y.
Heikeal AA.
Hess SE.
Kogej T.
Levin MD.
Marder SR.
McCord-Maughon D.
Perry JW.
Rockel H.
Rumi M.
Subramaniam G.
Webb WW.
Wu X.-L.
Xu C.
Science
1998,
281:
1653
<A NAME="RG19106ST-7">7</A>
Prim D.
Kirsch G.
J. Chem. Soc., Perkin Trans. 1
1994,
18:
2603
<A NAME="RG19106ST-8">8</A> For a solitary report describing introduction of thiophene at the C2,C5 positions
of thieno[2,3-b]thiophene by Stille’s protocol, see:
Heeney M.
Bailey C.
Genevicius K.
Shukunov M.
Sparrowe D.
Tierney S.
McCulloch I.
J. Am. Chem. Soc.
2005,
127:
1078
<A NAME="RG19106ST-9A">9a</A>
Mashraqui SH.
Hariharasubramanian H.
Kumar S.
Synthesis
1999,
2030
<A NAME="RG19106ST-9B">9b</A>
Mohareb RM.
Sherif SM.
Habashi A.
Abdel-Sayed NI.
Osman SS.
Collect. Czech. Chem. Commun.
1995,
60:
1578
<A NAME="RG19106ST-9C">9c</A>
El-Saghier AMM.
Bull. Chem. Soc. Jpn.
1993,
66:
2011
<A NAME="RG19106ST-9D">9d</A>
Dejong RL.
Brandsma L.
Synth. Commun.
1991,
21:
145
<A NAME="RG19106ST-9E">9e</A>
Junjappa H.
Ila H.
Asokan CV.
Tetrahedron
1990,
46:
5423
<A NAME="RG19106ST-9F">9f</A>
Dalgaard L.
Jensen L.
Lawesson SO.
Tetrahedron
1974,
30:
93
<A NAME="RG19106ST-9G">9g</A>
Abdel-Ghany H.
Khodairy A.
Phosphorous, Sulfur Silicon Relat. Elem.
2000,
166:
45
<A NAME="RG19106ST-10A">10a</A> 3,4-Diaryl/heteroaryl thieno[2,3-b]thiophenes are well known, see:
Mashraqui SH.
Ashraf M.
Harini H.
Kellogg RM.
Meetsma A.
J. Mol. Struct.
2004,
689:
107
<A NAME="RG19106ST-10B">10b</A>
Mashraqui SH.
Sangvikar Y.
Ashraf M.
Kumar S.
Daub ETH.
Tetrahedron
2005,
61:
3507
<A NAME="RG19106ST-11A">11a</A>
Hassan J.
Sevignon M.
Gozzi C.
Schulz E.
Lemaire M.
Chem. Rev.
2002,
102:
1359
<A NAME="RG19106ST-11B">11b</A>
Littke AF.
Fu GC.
Angew. Chem. Int. Ed.
2002,
41:
4176
<A NAME="RG19106ST-11C">11c</A>
Espinet P.
Echavarren AM.
Angew. Chem. Int. Ed.
2004,
43:
4704
<A NAME="RG19106ST-11D">11d</A>
Fang Y.-Q.
Hanan GS.
Synlett
2003,
852
<A NAME="RG19106ST-11E">11e</A>
Wallace DJ.
Chen C.-Y.
Tetrahedron Lett.
2002,
43:
6987
<A NAME="RG19106ST-11F">11f</A>
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
<A NAME="RG19106ST-12">12</A>
Akita Y.
Itagaki Y.
Takaziwa S.
Ohta A.
Chem. Pharm. Bull.
1989,
37:
1477
For leading references, see:
<A NAME="RG19106ST-13A">13a</A>
Glover B.
Harvey KA.
Liu B.
Sharp MJ.
Tymoschenko MF.
Org. Lett.
2003,
5:
301
<A NAME="RG19106ST-13B">13b</A>
Masui K.
Mori A.
Okano K.
Takamura K.
Kinoshita M.
Ikeda T.
Org. Lett.
2004,
6:
2011
<A NAME="RG19106ST-13C">13c</A>
Lane SB.
Sames D.
Org. Lett.
2004,
6:
2897
<A NAME="RG19106ST-13D">13d</A>
Sezen B.
Sames D.
J. Am. Chem. Soc.
2003,
125:
5274
<A NAME="RG19106ST-13E">13e</A>
Fujita Y.
Hiraki K.
Kiamogawa Y.
Suenaga M.
Toggoh K.
Fujiwara Y.
Bull. Chem. Soc. Jpn.
1989,
62:
1081
<A NAME="RG19106ST-13F">13f</A>
Jia C.
Lu W.
Kitamura T.
Fujiwara Y.
Org. Lett.
1999,
13:
2097
<A NAME="RG19106ST-14">14</A>
Chabert JFD.
Gozzi C.
Lemaire M.
Tetrahedron Lett.
2002,
43:
1829
<A NAME="RG19106ST-15">15</A>
Chabert JFD.
Joucla L.
David E.
Lemaire M.
Tetrahedron
2004,
60:
3221
<A NAME="RG19106ST-16">16</A> For a recent review on direct C-H arylations, see:
Campeau C.-L.
Fagnou K.
Chem. Commun.
2006,
1253
<A NAME="RG19106ST-17">17</A>
Typical procedure: To a solution of 1 (0.168 g, 1 mmol) and appropriate aryl halide (2.1 mmol) in dry DMF (15 mL) were
introduced anhyd K2CO3 (0.600 g, ca. 2 mmol), n-Bu4NBr (0.644 g, 2 mmol) and Pd(OAc)2 (10 mg). The reaction mixture was stirred and heated at 80 °C for the time specified
(Table
[1]
) under a N2 atmosphere. The reaction mixture was allowed to cool to r.t., poured into H2O, extracted with CH2Cl2 and the organic extract dried over anhyd Na2SO4. The crude material obtained on solvent removal was purified by flash column chromatography
on silica gel (hexane-CHCl3- mixtures) to obtain the corresponding diaryl thienothiophenes. 4: Yield 70%; mp 300 °C (dec.); IR (KBr): 2922, 1588, 1512, 1417, 1340, 1106, 932,
850, 750, 737, 694, 524, 485 cm-1; 1H NMR (CDCl3, 300 MHz): δ = 2.60 (s, 6 H, CH3), 7.61 (d, J = 10.5 Hz, 4 H, ArH), 8.31 (d, J = 10.5 Hz, 4 H, ArH); Anal. Calcd for C20H14N2O4S2: C, 58.54; H, 3.41; N, 6.83; S, 15.61. Found: C, 58.34; H, 3.63; N, 6.85; S, 15.49.
10: Yield 65%; mp 293-295 °C; IR (KBr): 3423, 2921, 1722, 1604, 1523, 1433, 1403, 1279,
1180, 1104, 1017, 965, 932, 850, 766, 700 cm-1; 1H NMR (CDCl3, 300 MHz): δ = 2.57 (s, 6 H, -CH3), 2.95 (s, 6 H, -OCH3), 7.54 (d, J = 6 Hz, 4 H, ArH), 8.11 (d, J = 6 Hz, 4 H, ArH); Anal. Calcd for C24H20O4S2: C, 66.05; H, 4.60; S, 14.70. Found: C, 66.10; H, 4.52; S, 14.55. 12: Yield 71%; mp >320 °C; IR (KBr): 3070, 2921, 1655, 1510, 1485, 1432, 1360, 1301,
1269, 1088, 1035, 937, 897, 881, 790, 745, 672, 610, 592, 555, 463 cm-1; 1H NMR (CDCl3, 300 MHz): δ = 2.57 (s, 6 H, CH3), 2.67 (s, 6 H, -COCH3), 7.29 (d, J = 3 Hz, 2 H, thiophene H), 7.60 (d, J = 3 Hz, 2 H, thiophene H); Anal. Calcd for C20H16O2S4: C, 57.69; H, 3.90; S, 31.22. Found: C, 57.54; H, 3.85; S, 31.02. 14: Yield 61%; mp 265-268 °C; IR (KBr): 2958, 2837, 1606, 1570, 1525, 1492, 1461, 1439,
1297, 1275, 1248, 1177, 1110, 1041, 1028, 926, 810, 825, 649, 628, 542, 517 cm-1; 1H NMR (CDCl3, 300 MHz): δ = 2.20 (s, 6 H, -CH3), 3.80 (s, 6 H, -OCH3), 6.90 (d, J = 8.0 Hz, 4 H, ArH), 7.35 (d, J = 8.0 Hz, 4 H, ArH); Anal. Calcd for C22H20O2S2: C, 69.47; H, 5.26; S, 16.84. Found: C, 69.31; H, 5.20; S, 16.64. 18: Yield 47%; mp 308-311 °C; IR (KBr): 3086, 2916, 1440, 1418, 1382, 1216, 1158, 1117,
1045, 1034, 999, 961, 902, 863, 830, 809, 736, 725, 564 cm-1; 1H NMR (CDCl3, 300 MHz): δ = 2.35 (s, 6 H, -CH3), 2.50 (s, 6 H, -CH3), 6.85 (s, 2 H, thienothiophene H), 7.30 (s, 4 H, ArH); Anal. Calcd for C22H18S4: C, 64.40; H, 4.40; S, 31.22. Found: C, 64.28; H, 4.42; S, 31.02.
<A NAME="RG19106ST-18">18</A>
The in situ reduction of Pd2+ to Pd0 is conceivable via DMF and or tributylamine mediated processes. Tributylamine in
turn could be generated via the Hoffmann elimination of the quarternary ammonium salt
under the reaction conditions.
<A NAME="RG19106ST-19">19</A> For a related mechanism proposed for Pd catalyzed arylations of 2-furfuraldehyde,
see:
McClure MS.
Glover B.
McSorley E.
Millar A.
Osterhout MH.
Roschangar F.
Org. Lett.
2001,
3:
1677
<A NAME="RG19106ST-20">20</A> That compound 12 containing an acetyl thiophene absorbs at lower energy (λmax 367 nm) than the cyano- or ester-substituted benzene analogues 6 or 10 (λmax 325-336 nm) may not be surprising on account of better charge delocalization available
from a relatively less resonance-stabilized thiophene ring than from benzene. For
discussion, see:
Alobert ID.
Marks TJ.
Ratner MA.
J. Am. Chem. Soc.
1997,
119:
6575 ; and references cited therein