References and Notes
1a
Kiefel MJ.
von Itzstein M.
Chem. Rev.
2002,
102:
471
1b
Angata T.
Varki A.
Chem. Rev.
2002,
102:
439
2a
Kim KW.
Lee YJ.
Kim JH.
Sung DK.
Chem. Commun.
2002,
116
2b
Li S.
Hui X.-P.
Yang SB.
Jia Z.-J.
Xu D.-F.
Lu T.-J.
Tetrahedron: Asymmetry
2005,
16:
1729
3a
von Itzstein M.
Wu WY.
Kok GB.
Pegg MS.
Dyason JC.
Jin B.
Jin B.
Phan TV.
Smythe ML.
White HF.
Oliver SW.
Colman PM.
Varghese JN.
Ryan DM.
Woods JM.
Bethell RC.
Holtham VJ.
Cameron JM.
Penn CR.
Nature (London)
1993,
363:
418
3b
Fleming DM.
Expert Opin. Pharmacol.
2003,
4:
799
For example of diastereoselective methods, see:
4a
Delton MH.
Yuen GU.
J. Org. Chem.
1968,
33:
2473
4b
Sabino AA.
Pilli RA.
Tetrahedron Lett.
2002,
43:
2819
4c
El Ashry ESH.
El Kilany Y.
Mousaad A.
J. Chem. Soc., Perkin Trans. 1
1988,
139
4d
Annunziata R.
Mauro CF.
Raimondi L.
Stefanelli S.
Tetrahedron Lett.
1987,
28:
3139
For selected examples of enzyme-catalyzed methods, see:
5a
Effenberger F.
Hopf M.
Ziegler T.
Hudelmayer J.
Chem. Ber.
1991,
124:
1651
5b
Bianchi P.
Roda G.
Riva S.
Danieli B.
Zabelinskaja-Mackova A.
Griengl H.
Tetrahedron
2001,
57:
2213
6a
Katsuki T.
Lee AWM.
Ma P.
Martin VS.
Masamune S.
Sharpless KB.
Tuddenham D.
Walker FJ.
J. Org. Chem.
1982,
47:
1378
6b
Ko SY.
Lee AWM.
Masamune S.
Reed LA.
Sharpless KB.
Walker WJ.
Science
1983,
220:
249
7a
VanNieuwenhze MS.
Sharpless KB.
Tetrahedron Lett.
1994,
35:
843
7b
Xu D.
Park CY.
Sharpless KB.
Tetrahedron Lett.
1994,
35:
2495
7c
Lohray BB.
Kalantar TH.
Kim BM.
Park CY.
Shibata T.
Wai JSM.
Sharpless KB.
Tetrahedron Lett.
1989,
30:
2041
8a
Dalko PI.
Moisan L.
Angew. Chem. Int. Ed.
2004,
43:
5138
8b
Merino P.
Tejero T.
Angew. Chem. Int. Ed.
2004,
43:
2995
8c
Armstrong A.
Angew. Chem. Int. Ed.
2004,
43:
1460
8d
Dalko PI.
Moisan L.
Angew. Chem. Int. Ed.
2001,
40:
3726
8e
List B.
Tetrahedron
2002,
58:
5573
8f
Duthaler RO.
Angew. Chem. Int. Ed.
2003,
42:
975
For examples of organocatalytic epoxidations, see:
9a
Julía S.
Masana J.
Vega JC.
Angew. Chem., Int. Ed. Engl.
1980,
19:
929
9b
Julía S.
Guixer J.
Masana J.
Rocas J.
Colonna S.
Annunziata R.
Molinari H.
J. Chem. Soc., Perkin Trans. 1
1982,
1317
9c
Helder T.
Hummelen JC.
Laane RWPM.
Wiering JS.
Wynberg H.
Tetrahedron Lett.
1976,
1831
9d
Corey EJ.
Zhang F.-Y.
Org. Lett.
1999,
1:
1287
9e
Lygo B.
Wainwright PG.
Tetrahedron Lett.
1998,
38:
1599
9f
Jew S.-S.
Lee J.-H.
Jeong B.-S.
Yoo M.-S.
Kim M.-J.
Lee Y.-J.
Lee J.
Choi S.-H.
Lee K.
Lah M.-S.
Park H.-G.
Angew. Chem. Int. Ed.
2005,
44:
1383
9g For the use of chiral ketones as catalysts, see: Shi Y.
Acc. Chem. Res.
2004,
37:
488 ; and references therein
9h For the use of chiral amines, see: Bohe L.
Hanquet M.
Lusinchi M.
Lusinchi X.
Tetrahedron Lett.
1993,
34:
7271
9i
Adamo MFA.
Aggarwal VK.
Sage MA.
J. Am. Chem. Soc.
2000,
122:
8317
9j
Lattanzi A.
Org. Lett.
2005,
7:
2579
9k
Lattanzi A.
Adv. Synth. Catal.
2006,
7:
339
For a-oxidations with nitrosobenzene, see:
10a
Bøgevig A.
Sundén H.
Córdova A.
Angew. Chem. Int. Ed.
2004,
43:
1109
10b
Córdova A.
Sundén H.
Bøgevig A.
Johansson M.
Himo F.
Chem. Eur. J.
2004,
10:
3673
10c
Zhong G.
Angew. Chem. Int. Ed.
2003,
42:
4247
10d
Brown SP.
Brochu MP.
Sinz CJ.
MacMillan DWC.
J. Am. Chem. Soc.
2003,
125:
10808
10e
Hayashi Y.
Yamaguchi J.
Hibino K.
Shoji M.
Tetrahedron Lett.
2003,
44:
8293
10f
Hayashi Y.
Yamaguchi J.
Hibino K.
Shoji M.
Angew. Chem. Int. Ed.
2004,
43:
1112
10g
Hayashi Y.
Yamaguchi J.
Sumiya T.
Hibino K.
Shoji M.
J. Org. Chem.
2004,
69:
5966
10h
Momiyama N.
Torii H.
Saito S.
Yamamoto H.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
5374
10i
Yamamoto Y.
Momiyama N.
Yamamoto H.
J. Am. Chem. Soc.
2004,
126:
5962
10j
Wang W.
Wang J.
Li H.
Liao L.
Tetrahedron Lett.
2004,
45:
7235
For a-oxidations with singlet molecular oxygen, see:
10k
Córdova A.
Sundén H.
Engqvist M.
Ibrahem I.
Casas J.
J. Am. Chem. Soc.
2004,
126:
8914
10l
Sundén H.
Engqvist M.
Casas J.
Ibrahem I.
Córdova A.
Angew. Chem. Int. Ed.
2004,
43:
6532
10m With other oxidants, see: Engqvist M.
Casas J.
Sundén H.
Ibrahem I.
Córdova A.
Tetrahedron Lett.
2005,
46:
2053
11a
Marigo M.
Franzén J.
Poulsen TB.
Zhuang W.
Jørgensen KA.
J. Am. Chem. Soc.
2005,
127:
6964
11b
Sundén H.
Ibrahem I.
Córdova A.
Tetrahedron Lett.
2006,
47:
99
11c
Zhuang WZ.
Marigo M.
Jørgensen KA.
Org. Biomol. Chem.
2005,
3:
3883
12 To a stirred solution of 3 (16 mg, 20 mol%) in CHCl3 (2 mL) was added trans-cinnamaldehyde (1a, 66 mg, 0.5 mmol) and H2O2 (0.6 mmol, 50% aq solution). The reaction was vigorously stirred at 4 °C for 7 h. Then the reaction mixture was diluted with EtOH (2 mL) and cooled to 0 °C followed by addition of NaBH4 (38 mg, 1.0 mmol). The mixture was then stirred for 10 min, quenched with H2SO4 (0.5 N, 8 mL) and EtOAc (8 mL). Next, the reaction mixture was stirred at r.t. for 1 h. The mixture was separated and the water layer was extracted with EtOAc (6 × 5 mL). The organic layer was collected, dried over Na2SO4 and the solvent was removed. The residue was purified by silica gel chromatography (EtOAc) to give the product 2a (53 mg, 63%).
(2R,3S)-1-Phenyl-propane-1,2,3-triol (2a): [a]D
25 +30.3 (c 1.0, CHCl3); [a]D
25 +25.3 (c 1.0, H2O), lit.
[4a]
[a]D
23 +19.6 (c 6.3, H2O). 1H NMR (400 MHz, D2O): d (major diastereomer) = 3.64 (dd, J = 7.2, 11.6 Hz, 1 H), 3.82 (dd, J = 3.2, 11.6 Hz, 1 H), 3.94 (ddd, J = 3.2, 7.2, 7.2 Hz, 1 H), 4.67 (d, J = 7.2 Hz, 1 H), 7.41-7.49 (m, 5 H); d (minor diastereomer) = 3.43 (dd, J = 7.2, 12.0 Hz, 1 H), 3.54 (dd, J = 4.0, 12.0 Hz, 1 H), 3.89 (ddd, J = 4.0, 6.4, 7.2 Hz, 1 H), 4.70 (d, J = 6.4 Hz, 1 H), 7.41-7.49 (m, 5 H). 13C NMR (100 MHz, D2O): d (major isomer) = 62.8. 74.1, 74.8, 127.4, 128.4, 128.8, 140.6; d (minor isomer) = 62.7. 74.4, 75.7, 126.9, 128.4, 128.9, 140.7. The ee was determined after acetylation by HPLC on Daicel Chiralpak OJ with iso-hexane-i-PrOH (85:15) as the eluent; major diastereomer - minor isomer: t
R = 20.923 min; major isomer: t
R = 28.299 min; minor diastereomer - minor isomer: t
R = 36.090 min; major isomer: t
R = 49.281 min. HRMS (ESI): m/z calcd for C9H12O3Na [M + Na]+: 191.0679; found: 191.0687.
13 To a stirred solution of 3 (16 mg, 20 mol%) in CHCl3 (2 mL) was added trans-cinnamaldehyde (1a, 66 mg, 0.5 mmol) and H2O2 (0.6 mmol, 50% aq solution). The reaction was vigorously stirred at 4 °C for 7 h. Then the reaction mixture was diluted with EtOH (2 mL) and cooled to 0 °C followed by addition of NaBH4 (38 mg, 1.0 mmol) and the mixture was stirred for 10 min. Next, NaOH (0.5 N, 10 mL) and
t-BuOH (2 mL) were added and the reaction temperature increased to 70 °C. After 24 h of stirring at this temperature, the mixture was separated and the water layer was extracted with EtOAc (6 × 5 mL). Then the organic layer was collected, dried over Na2SO4 and the solvent was removed. The crude residue was purified by silica gel chromatography using a gradient system (pentane-EtOAc = 1:1) to give the 2-epoxy alcohol (45 mg) and then EtOAc to give the triol 2a (39 mg, 39%).
14 To a stirred solution of 3 (16 mg, 20 mol%) in CHCl3 (2 mL) was added trans-cinnamaldehyde (1a, 66 mg, 0.5 mmol) and H2O2 (0.6 mmol, 50% aq solution). The reaction was vigorously stirred at 4 °C for 7 h. Then the reaction mixture was diluted with EtOH (2 mL) and cooled to 0 °C followed by addition of NaBH4 (38 mg, 1.0 mmol) After 10 min of stirring, EtOAc (8 mL) and HCl (2 N, 4 mL) were added. The mixture was extracted and the water layer was extracted with EtOAc (3 × 5 mL). The organic layers were collected, dried over Na2SO4 and the solvent was removed. The residue was purified by silica gel chromatography (pentane-EtOAc = 1:1) to give 4b (68%). Compound 4b: [a]D
25 +25.7 (c 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): d = 3.78 (dd, J = 6.4, 12.8 Hz, 1 H), 3.85 (dd, J = 3.2, 12.8 Hz, 1 H), 4.01-4.04 (m, 1 H), 4.84 (d, J = 7.6 Hz, 1 H), 7.36 (s, 4 H). 13C NMR (100 MHz, CDCl3): d = 61.3. 63.3, 75.3, 129.1, 129.6, 134.9, 136.6. The ee was determined by HPLC on Agilent Chiralpak AD column with hexane-i-PrOH (90:10) as the eluent; minor isomer: t
R = 22.750 min; major isomer: t
R = 28.463 min. HRMS (ESI): m/z calcd for C9H10Cl2O2Na [M + Na]+: 242.9950; found: 242.9952.