Subscribe to RSS
DOI: 10.1055/s-2006-958435
A Versatile One-Pot Synthesis of 4-Aryl-1,5-disubstituted 1,2,3-Triazoles via 1,3-Dipolar Cycloaddition Followed by Negishi Reaction under New Conditions
Publication History
Publication Date:
21 December 2006 (online)
Abstract
Several derivatives of 4-aryl-1,5-disubstituted 1,2,3-triazole were synthesized in good yields via 1,3-dipolar cycloaddition followed by Negishi reaction under new conditions.
Key words
triazole - Negishi reaction - 1,3-dipolar cycloaddition - XANTPHOS - zinc - cross-coupling
- 1
Bourne Y.Kolb HC.Radić Z.Sharpless KB.Taylor P.Marchot P. Proc. Natl. Acad. Sci. U. S. A. 2004, 101: 1449 - 2
Lewis WG.Green LG.Grynszpan F.Radić Z.Carlier PR.Taylor P.Finn MG.Sharpless KB. Angew. Chem. Int. Ed. 2002, 41: 1053 -
3a
Kawamoto H,Ito S,Satoh A,Nagatomi Y,Hirata Y,Kimura T,Suzuki G,Sato A, andOhta H. inventors; WO 2005085214. -
3b
Kawamoto H,Ito S,Satoh A,Nagatomi Y,Hirata Y,Kimura T,Suzuki G,Sato A, andOhta H. inventors; WO 2006004142. -
3c
Timpe C,Borghese A,Coffey DS,Footman PK,Pedersen SW,Reutzel-Edens SM,Tameze SL, andWeber C. inventors; WO 2005042515. -
3d
Amegadzie AK,Gardinier KM,Hembre EJ,Hong JE,Jungheim LN,Muehl BS,Remick DM,Robertson MA, andSavin KA. inventors; WO 2003091226. -
3e
Tullis JS.Van Rens JC.Natchus MG.Clark MP.De B.Hsieh LC.Janusz MJ. Bioorg. Med. Chem. Lett. 2003, 13: 1665 -
3f
Tullis JS,Van Rens JC,Clark MP,Blass BE,Natchus MG, andDe B. inventors; WO 2002088113. -
3g
Tullis JS,Van Rens JC,Clark MP,Blass BE,Natchus MG, andDe B. inventors; WO 2002088108. - 4
Gold H. Justus Liebigs Ann. Chem. 1965, 688: 205 -
5a
Huisgen R. In 1,3-Dipolar Cycloaddition ChemistryPadwa A. Wiley; New York: 1984. p.1-176 -
5b
Padwa A. In Comprehensive Organic Synthesis Vol. 4:Trost BM. Pergamon; Oxford: 1991. p.1069-1109 -
5c
Fan W.-Q.Katritzky AR. In Comprehensive Heterocyclic Chemistry II Vol. 4:Katritzky AR.Rees CW.Scriven EFV. Pergamon; Oxford: 1996. p.101-126 -
5d
Himbert G.Frank D.Regitz M. Chem. Ber. 1976, 109: 370 -
5e
Fridman SG.Lisovska NM. Zap. Inst. Khim., Akad. Nauk Ukr. R.S.R., Inst. Khim. 1940, 6: 353 -
5f
Boyer NM.Mack CH.Goebel N.Morgan LR. J. Org. Chem. 1958, 23: 1051 -
5g
Akimova GS.Chistokletov VN.Petrov AA. Zh. Org. Khim. 1965, 1: 2077 - 6
Krasiński A.Fokin VV.Sharpless KB. Org. Lett. 2004, 6: 1237 -
7a
Deng J.Wu Y.-M.Chen Q.-Y. Synthesis 2005, 2730 -
7b
Wu Y.-M.Deng J.Li Y.Chen Q.-Y. Synthesis 2005, 1314 - 8
Zhang L.Chen X.Xue P.Sun HHY.Williams ID.Sharpless KB.Fokin VV.Jia G. J. Am. Chem. Soc. 2005, 127: 15998 - 9
Majireck MM.Weinreb SM. J. Org. Chem. 2006, 71: 8680 - 10
Kamijo S.Jin T.Yamamoto Y. Tetrahedron Lett. 2004, 45: 689 -
11a
Akimova GS.Chistokletov VN.Petrov AA. Zh. Org. Khim. 1967, 3: 968 -
11b
Akimova GS.Chistokletov VN.Petrov AA. Zh. Org. Khim. 1967, 3: 2241 -
11c
Akimova GS.Chistokletov VN.Petrov AA. Zh. Org. Khim. 1968, 4: 389 -
12a
Tsuji J. In Palladium Reagents and Catalysts: New Perspectives for the 21st CenturyTsuiji J. Wiley; Chichester: 2004. p.327-351 -
12b
Knochel P.Perea JJA.Jones P. Tetrahedron 1998, 54: 8275 - 13
Dai C.Fu GC. J. Am. Chem. Soc. 2001, 123: 2719 - 14
Huang X.Anderson KW.Zim D.Jiang L.Klapars A.Buchwald SL. J. Am. Chem. Soc. 2003, 125: 6653 -
15a
Hadei N.Kantchev EAB.O’Brien CJ.Organ MG. Org. Lett. 2005, 7: 3805 -
15b
Hadei N.Kantchev EAB.O’Brien CJ.Organ MG. J. Org. Chem. 2005, 70: 8503 - 16 Bite angle as a cis-coordinating ligand:
Mann G.Shelby Q.Roy AH.Hartwig JF. Organometallics 2003, 22: 2775 - 17
Ogasawara M.Yoshida K.Hayashi T. Organometallics 2000, 19: 1567 - 18
Hamman BC.Hartwig JF. J. Am. Chem. Soc. 1998, 120: 7369 - It is known that DPPF generally behaves as a cis-coordinat-ing ligand. However, DtBPF has been reported to behave as a trans-coordinating ligand; this may be the reason for the shut-down of our Negishi reaction. See:
-
19a
Dekker GPCM.Elsevier CJ.Vrieze K.van Leeuwen PWNM. Organometallics 1991, 11: 1598 -
19b
Zuideveld MA.Swennenhuis BHG.Boele MDK.Guari Y.van Strijdonck GPF.Reek JNH.Kamer PCJ.Goubitz K.Fraanje J.Lutz M.Spek AL.van Leeuwen PWNM. J. Chem. Soc., Dalton Trans. 2002, 2308 -
20a
Shi J.-C.Zeng X.Negishi E. Org. Lett. 2003, 5: 1825 -
20b
Schöpfer U.Schlapbach A. Tetrahedron 2001, 57: 3069 -
20c
Zeng X.Hu Q.Qian M.Negishi E. J. Am. Chem. Soc. 2003, 125: 13636 -
20d
Shi J.-C.Negishi E. J. Organomet. Chem. 2003, 687: 518 -
20e
Qian M.Negishi E. Tetrahedron Lett. 2005, 46: 2927 -
20f
Qian M.Negishi E. Synlett 2005, 1789 -
20g
Negishi E.Shi J.-C.Zeng X. Tetrahedron 2005, 61: 9886 -
20h
Tan Z.Negishi E. Angew. Chem. Int. Ed. 2006, 45: 762 -
21a
Itoh T.Mase T. Org. Lett. 2004, 6: 4587 -
21b
Wu L.Hartwig JF. J. Am. Chem. Soc. 2005, 127: 15824 -
21c
Willis MC.Brace GN.Holmes IP. Angew. Chem. Int. Ed. 2005, 44: 403 -
21d
Cacchi S.Fabrizi G.Goggiamani A.Parisi LM.Bernini R. J. Org. Chem. 2004, 69: 5608 -
21e
Anderson KW.Mendez-Perez M.Priego J.Buchwald SL. J. Org. Chem. 2003, 68: 9563 -
21f
Karnenburg M.van der Burgt YEM.Kamer PCJ.van Leeuwen PWNM. Organometallics 1995, 14: 3081 -
21g
Guari Y.van Es DS.Reek JNH.Kamer PCJ.van Leeuwen PWNM. Tetrahedron Lett. 1999, 40: 3789 -
21h
Wagaw S.Yang BH.Buchwald SL. J. Am. Chem. Soc. 1999, 121: 10251 -
21i
Harris MC.Geis O.Buchwald SL. J. Org. Chem. 1999, 64: 6019 -
21j
Yin J.Buchwald SL. Org. Lett. 2000, 2: 1101 -
21k
Yin J.Buchwald SL. J. Am. Chem. Soc. 2002, 124: 6043 -
21l
Ali MH.Buchwald SL. J. Org. Chem. 2001, 66: 2560 -
21m
Mispelaere-Canivet C.Spindler J.-F.Perrio S.Beslin P. Tetrahedron 2005, 61: 5253 - 24
Hayashi T.Konishi M.Kobori Y.Kumada M.Higuchi T.Hirotsu K. J. Am. Chem. Soc. 1984, 106: 158 - 25
Van Leeuwen PWNM.Kamer PCJ.Reek JNH.Dierkes P. Chem. Rev. 2000, 100: 2741 - 26
Ogasawara M.Yoshida K.Hayashi T. Organometallics 2000, 19: 1567
References and Notes
The results of the Negishi reaction under new conditions using simple substrates are as follows. Negishi reactions were conducted using 1 mol% of Pd2(dba)3 and 2 mol% XANTPHOS in THF-NMP (2:1) at 70 °C for 12-19 h. Zinc reagents were prepared by transmetalation from the corresponding Grignard reagents. Negishi reactions of bromobenzene with phenyl-, vinyl- and propynylzinc chloride produced coupling products in almost quantitative yields. A Negishi reaction of chlorobenzene and phenylzinc chloride produced biphenyl in 78% yield. Further results from reactions using a variety of zinc reagents and halides will be reported.
23The reaction was conducted with magnesium species 4a and bromobenzene(6) in the presence of 1 mol% of Pd2(dba)3 and 2 mol% XANTPHOS at 65 °C for 12 h.
27
Typical Procedure for 1,3-Dipolar Cycloaddition Followed by Negishi Reaction.
To a stirred solution of 8.4 wt% propynylmagnesium bromide(1a) in THF (d = 0.9339 g/cm-3, 1.35 mL, 0.742 mmol) was added azide 2a (95 mg, 0.693 mmol) in THF (0.1 mL), and the flask was washed with THF (2 × 0.1 mL). After stirring for 2 h at r.t., 1.41 M ZnCl2 in THF solution (0.54 mL, 0.762 mmol) was added to the resulting yellow slurry. The resulting red solution was stirred for 1 h, and then bromobenzene (6; 73 µL, 0.693 mmol) and an active palladium catalyst solution prepared by mixing Pd2(dba)3 (6.3 mg, 0.00693 mmol) and XANTPHOS (8.0 mg, 0.0138 mmol) in THF (0.38 mL) for 2 h (this pre-mixing step is important in ensuring that the Negishi reaction proceeds smoothly) were added. After degassing, the mixture was stirred at 60-65 °C for 12 h. The mixture was then cooled to r.t., and the reaction mixture was added to 15% aq NH4Cl (5 mL), stirred for 10 min, and extracted with THF (10 mL and 5 mL); the volume was then adjusted to 25 mL using THF. HPLC analysis showed that product 5a (158 mg assay) was obtained in 90% overall yield from 2a, and protonated triazole 3a was also recovered (12 mg assay, 10% recovery).
Spectroscopic Data for Products (Figure 2).
Compound 5a: IR (KBr): 3055, 2926, 1605, 1580, 1562, 1519, 1464, 1444, 1415, 1383, 1367, 1297, 1237, 1157, 1117, 1092, 1072, 1041, 1010 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.77 (br d, J = 8.0 Hz, 2 H), 7.52-7.47 (m, 4 H), 7.39 (br t, J = 7.5 Hz, 1 H), 7.29-7.25 (m, 2 H), 2.47 (s, 3 H). HRMS (ESI): m/z calcd for C15H13N3F [M + H]+: 254.1094; found: 254.1091.
Compound 5b: IR (KBr): 3052, 1610, 1526, 1495, 1460, 1442, 1278, 1260, 1151, 1110, 1006 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.80-7.77 (m, 2 H), 7.55 (m, 1 H), 7.49-7.46 (m, 2 H), 7.37 (m, 1 H), 7.11-7.04 (m, 2 H), 2.39 (d, J = 1.6 Hz, 3 H). HRMS (ESI): m/z calcd for C15H12N3F2 [M + H]+: 272.0999; found: 272.1001.
Compound 5c: IR (KBr): 3083, 1685, 1609, 1574, 1509, 1466, 1435, 1406, 1362, 1295, 1261, 1183, 1157, 1113, 1092, 1009 cm-1. 1H NMR (500 MHz, CDCl3): δ = 8.07 (br d, J = 8.3 Hz, 2 H), 7.90 (br d, J = 8.3 Hz, 2 H), 7.51-7.48 (m, 2 H), 7.29-7.26 (m, 2 H), 2.65 (s, 3 H), 2.51 (s, 3 H). HRMS (ESI): m/z calcd for C17H15N3OF [M + H]+: 296.1199; found: 296.1202.
Compound 5d: IR (KBr): 3087, 2986, 2944, 2904, 1696, 1657, 1611, 1563, 1518, 1474, 1448, 1432, 1410, 1390, 1365, 1312, 1279, 1222, 1176, 1160, 1106, 1011 cm-1. 1H NMR (500 MHz, CDCl3): δ = 8.16 (br d, J = 8.0 Hz, 2 H), 7.87 (br d, J = 8.0 Hz, 2 H), 7.51-7.49 (m, 2 H), 7.29-7.26 (m, 2 H), 4.41 (q, J = 7.0 Hz, 2 H), 2.50 (s, 3 H), 1.42 (t, J = 7.0 Hz, 3 H). HRMS (ESI): m/z calcd for C18H17N3O2F [M + H]+: 326.1305; found: 326.1306.
Compound 5e: IR (KBr): 3060, 2977, 1749, 1617, 1523, 1444, 1347, 1271, 1227, 1152, 1109, 1054, 1029, 1013 cm-1. 1H NMR (500 MHz, CDCl3): δ = 8.00 (br s, 1 H), 8.00 (d, J = 7.5 Hz, 1 H), 7.92 (br d, J = 7.5 Hz, 1 H), 7.57 (m, 1 H), 7.15-7.09 (m, 2 H), 5.39 (s, 2 H), 2.47 (d, J = 1.6 Hz, 3 H). HRMS (ESI): m/z calcd for C17H12N3O2F2 [M + H]+: 328.0898; found: 328.0896.
Compound 5f: IR (KBr): 2984, 2928, 1606, 1518, 1495 1466, 1443, 1415, 1383, 1351, 1294, 1257, 1235, 1156, 1116, 1091, 1007 cm-1. 1H NMR (500 MHz, CDCl3): δ = 8.85 (br s, 1 H), 8.10 (br d, J = 7.8 Hz, 1 H), 7.52-7.49 (m, 2 H), 7.33-7.26 (m, 3 H), 2.65 (br s, 3 H), 2.48 (s, 3 H). HRMS (ESI): m/z calcd for C15H14N4F [M + H]+: 269.1202; found: 269.1205.