References and Notes
<A NAME="RG29906ST-1A">1a</A>
Chan TH.
Fleming I.
Synthesis
1979,
761
<A NAME="RG29906ST-1B">1b</A>
Magnus P.
Aldrichimica Acta
1980,
13:
43
<A NAME="RG29906ST-1C">1c</A>
Fleming I.
Chem. Soc. Rev.
1981,
10:
83
<A NAME="RG29906ST-1D">1d</A>
Sakurai H.
Pure Appl. Chem.
1982,
54:
1
<A NAME="RG29906ST-1E">1e</A>
Schinzer D.
Synthesis
1988,
263
<A NAME="RG29906ST-1F">1f</A>
Hosomi A.
Acc. Chem. Res.
1988,
21:
200
<A NAME="RG29906ST-1G">1g</A>
Colvin EW.
Silicon Reagents in Organic Synthesis
Springer;
Berlin:
1988.
<A NAME="RG29906ST-1H">1h</A>
Sakurai H.
Synlett
1989,
1
<A NAME="RG29906ST-1I">1i</A>
Fleming I.
Dunogues J.
Smithers R.
Org. React.
1989,
37:
57
<A NAME="RG29906ST-1J">1j</A>
Fleming I. In Comprehensive Organic Synthesis
Vol. 2:
Trost BM.
Fleming I.
Paquette LA.
Pergamon;
Oxford:
1991.
p.563
<A NAME="RG29906ST-1K">1k</A>
Langkopf E.
Schinzer D.
Chem. Rev.
1995,
95:
1375
<A NAME="RG29906ST-1L">1l</A>
Brook MA.
Silicon in Organic, Organometallic and Polymer Chemistry
Wiley;
New York:
2000.
<A NAME="RG29906ST-1M">1m</A>
Chabaud L.
James P.
Landais Y.
Eur. J. Org. Chem.
2004,
3173
<A NAME="RG29906ST-2A">2a</A> For reviews concerning the synthesis of allylsilanes, see:
Sarkar TK.
Synthesis
1990,
969
<A NAME="RG29906ST-2B">2b</A>
Sarkar TK.
Synthesis
1990,
1101
<A NAME="RG29906ST-2C">2c</A> To see some examples of the synthesis of E-allylsilanes:
Tanigawa Y.
Fuse Y.
Murahashi S.-I.
Tetrahedron Lett.
1982,
23:
557
<A NAME="RG29906ST-2D">2d</A>
Bhushan V.
Lohray BB.
Enders D.
Tetrahedron Lett.
1993,
34:
5067
<A NAME="RG29906ST-2E">2e</A>
Marumoto S.
Kuwajima I.
J. Am. Chem. Soc.
1993,
115:
9021
<A NAME="RG29906ST-2F">2f</A>
Suginome M.
Matsumoto A.
Ito Y.
J. Am. Chem. Soc.
1996,
118:
3061
<A NAME="RG29906ST-2G">2g</A>
Hanamoto T.
Sugino A.
Kikukawa T.
Inanaga J.
Bull. Soc. Chim. Fr.
1997,
134:
391
<A NAME="RG29906ST-2H">2h</A>
Kamachi T.
Kuno A.
Matsuno C.
Okamoto S.
Tetrahedron Lett.
2004,
45:
4677
<A NAME="RG29906ST-2I">2i</A>
Hodgson DM.
Fleming MJ.
Stanway SJ.
J. Am. Chem. Soc.
2004,
126:
12250
<A NAME="RG29906ST-3">3</A>
Ilio H.
Ishii M.
Tsukamoto T.
Tetrahedron Lett.
1988,
29:
5965
<A NAME="RG29906ST-4">4</A>
Desponds O.
Franzini L.
Schlosser M.
Synthesis
1997,
150
<A NAME="RG29906ST-5A">5a</A>
Fleming I.
Sarkar AK.
J. Chem. Soc., Chem. Commun.
1986,
1199
<A NAME="RG29906ST-5B">5b</A>
Fleming I.
Gil S.
Sarkar AK.
J. Chem. Soc., Perkin Trans. 1
1992,
3351
<A NAME="RG29906ST-6A">6a</A>
Obora Y.
Tsuji Y.
Kobayashi M.
Kawamura T.
J. Org. Chem.
1995,
60:
4647
<A NAME="RG29906ST-6B">6b</A>
Landais Y.
Planchenault D.
Weber V.
Tetrahedron Lett.
1994,
35:
9549
<A NAME="RG29906ST-7">7</A>
Concellón JM.
Bernad PL.
Pérez-Andrés JA.
Angew. Chem. Int. Ed.
1999,
38:
2384
<A NAME="RG29906ST-8">8</A>
Concellón JM.
Bernad PL.
Bardales E.
Org. Lett.
2001,
3:
937
<A NAME="RG29906ST-9">9</A>
Concellón JM.
Rodríguez-Solla H.
Simal C.
Huerta M.
Org. Lett.
2005,
7:
5833
<A NAME="RG29906ST-10A">10a</A> α-Chloroaldehydes can be easily obtained, see:
Halland N.
Braunton A.
Bachmann S.
Marigo M.
Jørgensen KA.
J. Am. Chem. Soc.
2004,
126:
4790
<A NAME="RG29906ST-10B">10b</A> α-Chlorination of α-alkylated aldehydes was carried out using sulfuryl chloride:
Stevens CL.
Farkas E.
Gillis B.
J. Am. Chem. Soc.
1954,
76:
2695
<A NAME="RG29906ST-11">11</A>
General Procedure for the Synthesis of Compounds 3.
Trimethylsilylmethyllithium (12 mL, 1.0 M solution in pentane) was added at -85 °C
to a solution of the corresponding α-chloroaldehyde 1 (10 mmol) in THF (10 mL). After stirring for 2 h, the reaction mixture was quenched
by addition of sat. aq NH4Cl (10 mL). Standard work-up provided crude 3-chloro-1-(trimethylsilyl)alkan-2-ols
2. The O-acetylation reaction was carried out by treatment of the corresponding crude
3-chloro-1-(trimethylsilyl)alkan-2-ols 2 (1 mmol) with Et3N (10 mL), Ac2O (10 mL) and a catalytic amount of DMAP (5 mg). The reaction mixture was stirred
for 12 h at r.t., then the reaction was quenched with ice-cold H2O (30 mL). The organic material was extracted with CH2Cl2. The combined extracts were dried over Na2SO4 and the solvent was removed under reduced pressure affording compounds 3 which were utilized without further purification. Compounds 3 were obtained as a mixture of diastereoisomers (roughly 1:1), after column chromatography
(hexane-EtOAc, 5:1).
<A NAME="RG29906ST-12">12</A> The solution of SmI2 in THF was rapidly obtained by reaction of diiodomethane with samarium powder in
the presence of sonic waves:
Concellón JM.
Rodríguez-Solla H.
Bardales E.
Huerta M.
Eur. J. Org. Chem.
2003,
1775
<A NAME="RG29906ST-13">13</A>
General Procedure for the Synthesis of Allylsilanes 4.
A solution of SmI2 (1.2 mmol) in THF (12 mL) was added dropwise, under a nitrogen atmosphere, to a stirred
solution of the corresponding starting material 3 (0.4 mmol) at r.t. The reaction mixture was then refluxed for 8 h. After this time,
it was quenched with aq HCl (0.1 M, 10 mL). The organic material was extracted with
Et2O. The combined extracts were dried over Na2SO4 and the solvent was removed under reduced pressure affording crude compounds 4 which were purified by short-column chromatography (silica gel, pentane as eluent).
Spectroscopical data for the compounds 4 which are not described in the literature are given here.
(Z)-Dodeca-2,11-dienyltrimethylsilane (4d): R
f
= 0.83 (pentane). 1H NMR (300 MHz, CDCl3): δ = 5.80 (ddt, J = 17.0, 10.2, 6.7 Hz, 1 H), 5.40-5.32 (m, 1 H), 5.28-5.21 (m, 1 H), 4.98 (ddt, J = 17.0, 2.3, 1.6 Hz, 1 H), 4.91 (ddt, J = 10.2, 2.3, 1.1 Hz, 1 H), 2.08-1.97 (m, 4 H), 1.47 (d, J = 8.5 Hz, 2 H), 1.43-1.25 (m, 10 H), 0.01 (s, 9 H). 13C NMR (75 MHz, CDCl3): δ = 139.1 (CH), 127.6 (CH), 125.1 (CH), 114.0 (CH2), 33.7 (CH2), 29.7 (CH2), 29.3 (CH2), 29.3 (CH2), 29.0 (CH2), 28.8 (CH2), 27.0 (CH2), 18.3 (CH2), -1.9 (3 × CH3). MS (70 eV): m/z (%): 238 (3) [M+], 73 (100), 59 (11), 41 (11). IR (neat): 2925, 2854, 1465, 1378 cm-1. Anal. Calcd for C15H30Si: C, 75.54; H, 12.68. Found: C, 75.22; H, 12.90.
Trimethyl[(2Z,8Z)-undeca-2,8-dienyl]silane (4e): R
f
= 0.85 (pentane). 1H NMR (300 MHz, CDCl3): δ = 5.44-5.22 (m, 4 H), 2.06-1.97 (m, 6 H), 1.47 (d, J = 8.3 Hz, 2 H), 1.39-1.34 (m, 4 H), 0.96 (t, J = 7.5 Hz, 3 H), 0.00 (s, 9 H). 13C NMR (75 MHz, CDCl3): δ = 131.5 (CH), 129.2 (CH), 127.5 (CH), 125.3 (CH), 29.5 (CH2), 29.4 (CH2), 27.0 (CH2), 26.9 (CH2), 20.5 (CH2), 18.3 (CH2), 14.3 (CH3), -1.9 (3 × CH3). MS (70 eV): m/z (%) = 224 (2) [M+], 150 (18), 142 (21), 121 (16), 73 (100), 59 (36), 45 (38). HRMS: m/z calcd for C13H25Si [M+ - Me]: 209.1726; found: 209.1729. IR (neat): 3007, 2929, 1462, 1248, 855 cm-1.
Trimethyl[(E/Z)-4-phenylpent-2-enyl]silane (4g): R
f
= 0.65, 0.60 (hexane). 1H NMR (300 MHz, CDCl3): δ = 7.37-7.21 (m, 10 H), 5.55-5.43 (m, 4 H), 3.75 (q, J = 7.5 Hz, 1 H), 3.51-3.46 (m, 1 H), 1.68-1.49 (m, 4 H), 1.40 (t, J = 6.0 Hz, 3 H), 1.38 (t, J = 6.8 Hz, 3 H), 0.06 (s, 9 H), 0.05 (s, 9 H). 13C NMR (75 MHz, CDCl3): δ = 147.0 (C), 146.8 (C), 133.6 (CH), 132.6 (CH), 128.3 (2 × CH), 128.2 (2 × CH),
127.1 (2 × CH), 126.9 (2 × CH), 125.7 (CH), 125.7 (CH), 125.1 (CH), 124.6 (CH), 42.4
(CH), 36.8 (CH), 22.5 (CH3), 21.7 (CH3), 18.5 (2 × CH2), -1.80 (3 × CH3), -1.90 (3 × CH3). MS (70 eV): m/z (%) = 218 (41) [M+], 144 (20), 135 (23), 129 (19), 105 (16), 73 (100), 59 (16), 45 (25). HRMS: m/z calcd for C14H22Si [M+]: 218.1491; found: 218.1487. IR (neat): 3004, 2957, 1248, 856, 698 cm-1.
Trimethyl[(E/Z)-3-methyldodec-2-enyl]silane (4i): R
f
= 0.90 (pentane). 1H NMR (300 MHz, CDCl3): δ = 5.17-5.08 (m, 2 H), 2.06-2.03 (m, 2 H), 1.99-1.86 (m, 4 H), 1.84-1.82 (m, 2
H), 1.67 (s, 3 H), 1.52 (s, 3 H), 1.39-1.12 (m, 28 H), 0.89-0.85 (m, 6 H), -0.02 (s,
9 H). 13C NMR (75 MHz, CDCl3): δ = 133.1 (C), 132.6 (C), 119.9 (CH), 119.8 (CH), 39.8 (CH2), 31.9 (2 × CH), 31.4 (CH2), 29.6 (2 × CH2), 29.5 (2 × CH2), 29.3 (2 × CH2), 29.2 (CH2), 28.2 (CH2), 27.9 (CH2), 25.5 (CH2), 23.3 (CH3), 22.6 (2 × CH2), 18.4 (CH2), 18.2 (CH2), 15.6 (CH3), 14.0 (2 × CH3), -1.80 (3 × CH3), -1.80 (3 × CH3). MS (70 eV): m/z (%) = 254 (6) [M+], 180 (2), 73 (100), 59 (5), 41 (6). HRMS: m/z calcd for C16H34Si [M+]: 254.2430; found: 254.2426. IR (neat): 2925, 2855, 1458, 1247, 857 cm-1.
<A NAME="RG29906ST-14">14</A>
Hsiao C.-N.
Shechter H.
Tetrahedron Lett.
1982,
23:
1963
<A NAME="RG29906ST-15">15</A>
Shiragami H.
Kawamoto T.
Imi K.
Matsubara S.
Utimoto K.
Nozaki H.
Tetrahedron
1988,
44:
4009
Other six-membered-ring transition-state models have been proposed to explain the
selectivity in other reactions of SmI2:
<A NAME="RG29906ST-16A">16a</A>
Molander GA.
Etter JB.
Zinke PW.
J. Am. Chem. Soc.
1987,
109:
453
<A NAME="RG29906ST-16B">16b</A>
Urban D.
Skrydstrup T.
Beau JM.
J. Org. Chem.
1998,
63:
2507
<A NAME="RG29906ST-16C">16c</A>
Concellón JM.
Pérez-Andrés JA.
Rodríguez-Solla H.
Angew. Chem. Int. Ed.
2000,
39:
2773
<A NAME="RG29906ST-16D">16d</A>
Concellón JM.
Pérez-Andrés JA.
Rodríguez-Solla H.
Chem. Eur. J.
2001,
7:
3062
<A NAME="RG29906ST-16E">16e</A>
Concellón JM.
Rodríguez-Solla H.
Chem. Soc. Rev.
2004,
33:
599 ; and references 7-9
To see previous works about the γ-effect of the silicon atom, see:
<A NAME="RG29906ST-17A">17a</A>
Sommer LH.
Dorfman E.
Goldberg GM.
Whitmore FC.
J. Am. Chem. Soc.
1946,
68:
488
<A NAME="RG29906ST-17B">17b</A>
Shiner VJ.
Ensinger MW.
J. Am. Chem. Soc.
1986,
108:
842
<A NAME="RG29906ST-17C">17c</A>
Davidson ER.
Shiner VJ.
J. Am. Chem. Soc.
1986,
108:
3135
<A NAME="RG29906ST-18">18</A>
This is consistent with other previously reported SmI2-mediated β-elimination methodologies with Z-selectivity (see ref. 7-9). So, when aryl-substituted olefins were obtained an enhancement
of the E-stereoisomer was observed.
<A NAME="RG29906ST-19">19</A>
An isomerization process of the Z-phenyl alkene to the more stable E-isomer cannot be discarded under this reaction conditions.
<A NAME="RG29906ST-20">20</A> A similar behavior has been observed in other SmI2-promoted processes when benzylic radicals are generated:
Davies SG.
Rodríguez-Solla H.
Tamayo JA.
Cowley AR.
Concellón C.
Garner AC.
Parkes AL.
Smith AD.
Org. Biomol. Chem.
2005,
3:
1435