Subscribe to RSS
DOI: 10.1055/s-2007-1019124
The Immunology of Multiple Sclerosis
Publication History
Publication Date:
07 February 2008 (online)
ABSTRACT
Recent years have witnessed a remarkable growth in literature related to the biology and treatment of multiple sclerosis (MS). The focus of this article is on aspects of the human immune response that have been implicated in the MS disease process and, as a corollary, represent rational targets for the development of safe and effective therapies. Much of the thinking about immune pathophysiology in patients with MS has been shaped by studies in animal models of central nervous system (CNS) inflammation. Translation to the human disease has continued to pose challenges. A simplified model of MS immune pathophysiology is presented to illustrate the basic principles by which peripheral immune activation, as well as compartmentalized immune responses within the CNS, is likely to impact the disease process and to identify the putative sites of action of current and future MS treatments.
KEYWORDS
Multiple sclerosis - human immunology - immune regulation - autoimmunity - cellular and humoral mechanisms - immune-neural interaction
REFERENCES
- 1 Ermann J, Fathman C G. Autoimmune diseases: genes, bugs and failed regulation. Nat Immunol. 2001; 2 759-761
- 2 Bettelli E, Pagany M, Weiner H L, Linington C, Sobel R A, Kuchroo V K. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med. 2003; 197 1073-1081
- 3 Bettelli E, Baeten D, Jäger A, Sobel R A, Kuchroo V K. Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J Clin Invest. 2006; 116 2393-2402
- 4 Stuart G, Krikorian K S. The neuro-paralytic accidents of anti-rabies treatment. Ann Trop Med Parasitol. 1928; 22 327-377
- 5 Rivers T M, Schwentker F F. Encephalomyelitis accompanied by myelin destruction experimentally produced in monkeys. J Exp Med. 1935; 61 689-702
- 6 Kabat E A, Wolf A, Bezer A E. The rapid production of acute disseminated encephalomyelitis in rhesus monkeys by injection of heterologous and homologous brain tissue with adjuvants. J Exp Med. 1947; 85 117-130
-
7 Wekerle H.
Antigen presentation by CNS glia . In: Kettenmann H, Ranson B Neuroglia. New York; Oxford University Press 1995 - 8 Paterson P Y. Transfer of allergic encephalomyelitis in rats by means of lymph node cells. J Exp Med. 1960; 111 119-136
- 9 Cook D N, Pisetsky D S, Schwartz D A. Toll-like receptors in the pathogenesis of human disease. Nat Immunol. 2004; 5 975-979
- 10 Dong C, Juedes A E, Temann U A et al.. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature. 2001; 409 97-101
- 11 Okazaki T, Iwai Y, Honjo T. New regulatory co-receptors: inducible co-stimulator and PD-1. Curr Opin Immunol. 2002; 14 779-782
- 12 Salama A D, Chitnis T, Imitola J et al.. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med. 2003; 198 71-78
- 13 Chitnis T, Khoury S J. Role of costimulatory pathways in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. J Allergy Clin Immunol. 2003; 112 837-849 , quiz 850
- 14 Cai G, Karni A, Oliveira E M, Weiner H L, Hafler D A, Freeman G J. PD-1 ligands, negative regulators for activation of naive, memory, and recently activated human CD4 + T cells. Cell Immunol. 2004; 230 89-98
- 15 Mitsdoerffer M, Schreiner B, Kieseier B C et al.. Monocyte-derived HLA-G acts as a strong inhibitor of autologous CD4 T cell activation and is upregulated by interferon-beta in vitro and in vivo: rationale for the therapy of multiple sclerosis. J Neuroimmunol. 2005; 159 155-164
- 16 Magnus T, Schreiner B, Korn T et al.. Microglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: implications for immune responses and autoimmunity in the CNS. J Neurosci. 2005; 25 2537-2546
- 17 Wiendl H. HLA-G in the nervous system. Hum Immunol. 2007; 68 286-293
- 18 Feger U, Tolosa E, Huang Y H et al.. HLA-G expression defines a novel regulatory T cell subset present in human peripheral blood and sites of inflammation. Blood. 2007; 110 568-577
- 19 Castelli L, Comi C, Chiocchetti A et al.. ICOS gene haplotypes correlate with IL10 secretion and multiple sclerosis evolution. J Neuroimmunol. 2007; 186 193-198
- 20 Kuchroo V K, Das M P, Brown J A et al.. B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell. 1995; 80 707-718
- 21 Anderson D E, Bieganowska K D, Bar-Or A et al.. Paradoxical inhibition of T-cell function in response to CTLA-4 blockade; heterogeneity within the human T-cell population. Nat Med. 2000; 6 211-214
- 22 Vijayakrishnan L, Slavik J M, Illes Z et al.. An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity. 2004; 20 563-575
- 23 Schreiner B, Mitsdoerffer M, Kieseier B C et al.. Interferon-beta enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis. J Neuroimmunol. 2004; 155 172-182
- 24 Bar-Or A. Human immune studies in multiple sclerosis. Adv Neurol. 2006; 98 91-109
- 25 Kieseier B C, Wiendl H, Hemmer B, Hartung H P. Treatment and treatment trials in multiple sclerosis. Curr Opin Neurol. 2007; 20 286-293
- 26 Murphy C A, Langrish C L, Chen Y et al.. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med. 2003; 198 1951-1957
- 27 Abbas A K, Murphy K M, Sher A. Functional diversity of helper T lymphocytes. Nature. 1996; 383 787-793
- 28 O'Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity. 1998; 8 275-283
- 29 Mosmann T R, Coffman R L. Heterogeneity of cytokine secretion patterns and functions of helper T cells. Adv Immunol. 1989; 46 111-147
- 30 Bettelli E, Carrier Y, Gao W et al.. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006; 441 235-238
- 31 Bettelli E, Oukka M, Kuchroo V KT. (H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol. 2007; 8 345-350
- 32 Gocke A R, Cravens P D, Ben L H et al.. T-bet regulates the fate of Th1 and Th17 lymphocytes in autoimmunity. J Immunol. 2007; 178 1341-1348
- 33 Sakaguchi S, Sakaguchi N, Asano M et al.. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995; 155 1151-1164
- 34 Anderton S, Burkhart C, Metzler B, Wraith D. Mechanisms of central and peripheral T-cell tolerance: lessons from experimental models of multiple sclerosis. Immunol Rev. 1999; 169 123-137
- 35 Kohm A P, Carpentier P A, Anger H A, Miller S D. Cutting edge: CD4 + CD25 + regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol. 2002; 169 4712-4716
- 36 Baecher-Allan C, Viglietta V, Hafler D A. Human CD4 + CD25 + regulatory T cells. Semin Immunol. 2004; 16 89-98
- 37 Cottrez F, Groux H. Specialization in tolerance: innate CD(4 + )CD(25 + ) versus acquired TR1 and TH3 regulatory T cells. Transplantation. 2004; 77 S12-S15
- 38 Hu D, Ikizawa K, Lu L, Sanchirico M E, Shinohara M L, Cantor H. Analysis of regulatory CD8 T cells in Qa-1-deficient mice. Nat Immunol. 2004; 5 516-523
- 39 Chess L, Jiang H. Resurrecting CD8 + suppressor T cells. Nat Immunol. 2004; 5 469-471
- 40 Sarantopoulos S, Lu L, Cantor H. Qa-1 restriction of CD8 + suppressor T cells. J Clin Invest. 2004; 114 1218-1221
- 41 Lu L, Werneck M B, Cantor H. The immunoregulatory effects of Qa-1. Immunol Rev. 2006; 212 51-59
- 42 Illés Z, Kondo T, Newcombe J, Oka N, Tabira T, Yamamura T. Differential expression of NK T cell V alpha 24J alpha Q invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J Immunol. 2000; 164 4375-4381
- 43 Murzenok P P, Matusevicius D, Freedman M S. Gamma/delta T cells in multiple sclerosis: chemokine and chemokine receptor expression. Clin Immunol. 2002; 103 309-316
- 44 Vaknin-Dembinsky A, Balashov K, Weiner H L. IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol. 2006; 176 7768-7774
- 45 Gutcher I, Urich E, Wolter K et al.. Interleukin 18-independent engagement of interleukin 18 receptor-alpha is required for autoimmune inflammation. Nat Immunol. 2006; 7 946-953
- 46 Farina C, Then Bergh F, Albrecht H et al.. Treatment of multiple sclerosis with Copaxone (COP): Elispot assay detects COP-induced interleukin-4 and interferon-gamma response in blood cells. Brain. 2001; 124 705-719
- 47 Hemmer B, Archelos J J, Hartung H P. New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci. 2002; 3 291-301
- 48 Steinman L, Martin R, Bernard C et al.. Multiple sclerosis: deeper understanding of its pathogenesis reveals new targets for therapy. Annu Rev Neurosci. 2002; 25 491-505
- 49 Antel J, Owens T. Multiple sclerosis and immune regulatory cells. Brain. 2004; 127 1915-1916
- 50 Viglietta V, Baecher-Allan C, Weiner H L, Hafler D A. Loss of functional suppression by CD4 + CD25 + regulatory T cells in patients with multiple sclerosis. J Exp Med. 2004; 199 971-979
- 51 Baecher-Allan C, Hafler D A. Human regulatory T cells and their role in autoimmune disease. Immunol Rev. 2006; 212 203-216
- 52 Baecher-Allan C, Wolf E, Hafler D A. MHC class II expression identifies functionally distinct human regulatory T cells. J Immunol. 2006; 176 4622-4631
- 53 Astier A L, Meiffren G, Freeman S, Hafler D A. Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J Clin Invest. 2006; 116 3252-3257
- 54 Lu L, Ikizawa K, Hu D, Werneck M B, Wucherpfennig K W, Cantor H. Regulation of activated CD4( + ) T cells by NK cells via the Qa-1-NKG2A inhibitory pathway. Immunity. 2007; 26 593-604
- 55 De Jager P L, Hafler D A. New therapeutic approaches for multiple sclerosis. Annu Rev Med. 2007; 58 417-432
- 56 Genain C P, Abel K, Belmar N et al.. Late complications of immune deviation therapy in a nonhuman primate. Science. 1996; 274 2054-2057
- 57 Pedotti R, Mitchell D, Wedemeyer J et al.. An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nat Immunol. 2001; 2 216-222
- 58 Korn T, Reddy J, Gao W et al.. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med. 2007; 13 423-431
- 59 Prod'homme T, Weber M S, Zamvil S S. T effectors outfox T regulators in autoimmunity. Nat Med. 2007; 13 411-413
- 60 Ota K, Matsui M, Milford E L et al.. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature. 1990; 346 183-187
- 61 Sun J B, Olsson T, Wang W Z et al.. Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls. Eur J Immunol. 1991; 21 1461-1468
- 62 Markovic-Plese S, Fukaura H, Zhang J et al.. T cell recognition of immunodominant and cryptic proteolipid protein epitopes in humans. J Immunol. 1995; 155 982-992
- 63 Kerlero de Rosbo N, Hoffman M, Mendel I et al.. Predominance of the autoimmune response to myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis: reactivity to the extracellular domain of MOG is directed against three main regions. Eur J Immunol. 1997; 27 3059-3069
- 64 Allegretta M, Nicklas J A, Sriram S, Albertini R J. T cells responsive to myelin basic protein in patients with multiple sclerosis. Science. 1990; 247 718-721
- 65 Pender M P. Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol. 2003; 24 584-588
- 66 Martin R, Jaraquemada D, Flerlage M et al.. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J Immunol. 1990; 145 540-548
- 67 Pender M P, Csurhes P A, Greer J M et al.. Surges of increased T cell reactivity to an encephalitogenic region of myelin proteolipid protein occur more often in patients with multiple sclerosis than in healthy subjects. J Immunol. 2000; 165 5322-5331
- 68 Pette M, Fujita K, Kitze B et al.. Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology. 1990; 40 1770-1776
- 69 Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner H L, Hafler D A. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med. 1994; 179 973-984
- 70 Bielekova B, Sung M H, Kadom N et al.. Expansion and functional relevance of high-avidity myelin-specific CD4 + T cells in multiple sclerosis. J Immunol. 2004; 172 3893-3904
- 71 Scholz C, Patton K T, Anderson D E et al.. Expansion of autoreactive T cells in multiple sclerosis is independent of exogenous B7 costimulation. J Immunol. 1998; 160 1532-1538
- 72 Lovett-Racke A E, Trotter J L, Lauber J et al.. Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients. A marker of activated/memory T cells. J Clin Invest. 1998; 101 725-730
- 73 Burns J, Bartholomew B, Lobo S. Isolation of myelin basic protein-specific T cells predominantly from the memory T-cell compartment in multiple sclerosis. Ann Neurol. 1999; 45 33-39
- 74 Bielekova B, Muraro P A, Golestaneh L et al.. Preferential expansion of autoreactive T lymphocytes from the memory T-cell pool by IL-7. J Neuroimmunol. 1999; 100 115-123
-
75 Bar-Or A, O'Connor K, Hafler D A.
Multiple sclerosis . In: Austen KF, Frank MM, Atkinson JP, Cantor H Samter's Immunologic Diseases. 6th ed. Philadelphia; Lippincott Williams & Wilkins 2001: 711-737 - 76 Becher B, Giacomini P S, Pelletier D, McCrea E, Prat A, Antel J P. Interferon-gamma secretion by peripheral blood T-cell subsets in multiple sclerosis: correlation with disease phase and interferon-beta therapy. Ann Neurol. 1999; 45 247-250
- 77 Biddison W E, Cruikshank W W, Center D M, Pelfrey C M, Taub D D, Turner R V. CD8 + myelin peptide-specific T cells can chemoattract CD4 + myelin peptide-specific T cells: importance of IFN-inducible protein 10. J Immunol. 1998; 160 444-448
- 78 Banwell B, Bar-Or A, Cheung R et al.. Abnormal T-cell reactivities in childhood inflammatory demyelinating disease and type 1 diabetes. Ann Neurol. 2007; , October 11 (Epub ahead of print)
- 79 Babbe H, Roers A, Waisman A et al.. Clonal expansions of CD8( + ) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med. 2000; 192 393-404
- 80 Hoftberger R, Aboul-Enein F, Brueck W et al.. Expression of major histocompatibility complex class I molecules on the different cell types in multiple sclerosis lesions. Brain Pathol. 2004; 14 43-50
- 81 Dornmair K, Goebels N, Weltzien H U et al.. T-cell-mediated autoimmunity: novel techniques to characterize autoreactive T-cell receptors. Am J Pathol. 2003; 163 1215-1226
- 82 Arbour N, Lapointe R, Saikali P, McCrea E, Regen T, Antel J P. A new clinically relevant approach to expand myelin specific T cells. J Immunol Methods. 2006; 310 53-61
- 83 Skulina C, Schmidt S, Dornmair K et al.. Multiple sclerosis: brain-infiltrating CD8 + T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proc Natl Acad Sci USA. 2004; 101 2428-2433
- 84 Tsuchida T, Parker K C, Turner R V et al.. Autoreactive CD8 + T-cell responses to human myelin protein-derived peptides. Proc Natl Acad Sci USA. 1994; 91 10859-10863
- 85 Buckle G J, Hollsberg P, Hafler D A. Activated CD8 + T cells in secondary progressive MS secrete lymphotoxin. Neurology. 2003; 60 702-705
- 86 Crawford M P, Yan S X, Ortega S B et al.. High prevalence of autoreactive, neuroantigen-specific CD8 + T cells in multiple sclerosis revealed by novel flow cytometric assay. Blood. 2004; 103 4222-4231
- 87 Moalem G, Leibowitz-Amit R, Yoles E et al.. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med. 1999; 5 49-55
- 88 Martino G, Adorini L, Rieckmann P et al.. Inflammation in multiple sclerosis: the good, the bad, and the complex. Lancet Neurol. 2002; 1 499-509
- 89 Schwartz M. Protective autoimmunity as a T-cell response to central nervous system trauma: prospects for therapeutic vaccines. Prog Neurobiol. 2001; 65 489-496
- 90 Shechter R, Ziv Y, Schwartz M. New GABAergic interneurons supported by myelin-specific T cells are formed in intact adult spinal cord. Stem Cells. 2007; 25 2277-2282
- 91 Linker R, Lee D H, Siglienti I, Gold R. Is there a role for neurotrophins in the pathology of multiple sclerosis?. J Neurol. 2007; 254(suppl) I33-I40
- 92 Karin N, Mitchell D J, Brocke S, Ling N, Steinman L. Reversal of experimental autoimmune encephalomyelitis by a soluble peptide variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of interferon gamma and tumor necrosis factor alpha production. J Exp Med. 1994; 180 2227-2237
- 93 Young D A, Lowe L D, Booth S S et al.. IL-4, IL-10, IL-13, and TGF-beta from an altered peptide ligand-specific Th2 cell clone down-regulate adoptive transfer of experimental autoimmune encephalomyelitis. J Immunol. 2000; 164 3563-3572
- 94 Kappos L, Comi G, Panitch H et al.. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nat Med. 2000; 6 1176-1182
- 95 Bielekova B, Goodwin B, Richert N et al.. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med. 2000; 6 1167-1175
- 96 Steinman L. The coming of age for antigen-specific therapy of multiple sclerosis. Eur J Neurol. 2006; 13 793-794
- 97 Fontoura P, Garren H, Steinman L. Antigen-specific therapies in multiple sclerosis: going beyond proteins and peptides. Int Rev Immunol. 2005; 24 415-446
- 98 Bar-Or A, Vollmer T, Antel J et al.. Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase I/II trial. Arch Neurol. 2007; 64 1407-1415
- 99 Cserr H F, Harling-Berg C J, Knopf P M. Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 1992; 2 269-276
- 100 de Vos A F, van Meurs M, Brok H P et al.. Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol. 2002; 169 5415-5423
- 101 Kivisäkk P, Mahad D J, Callahan M K et al.. Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann Neurol. 2004; 55 627-638
- 102 Wucherpfennig K W, Strominger J L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell. 1995; 80 695-705
- 103 Lang H L, Jacobsen H, Ikemizu S et al.. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol. 2002; 3 940-943
- 104 Springer T A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994; 76 301-314
- 105 Ransohoff R M. Mechanisms of inflammation in MS tissue: adhesion molecules and chemokines. J Neuroimmunol. 1999; 98 57-68
- 106 Campbell J J, Hedrick J, Zlotnik A et al.. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science. 1998; 279 381-384
- 107 Yong V W, Power C, Forsyth P, Edwards D R. Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci. 2001; 2 502-511
- 108 Sobel R A, Mitchell M E, Fondren G. Intercellular adhesion molecule-1 (ICAM-1) in cellular immune reactions in the human central nervous system. Am J Pathol. 1990; 136 1309-1316
- 109 Washington R, Burton J, Todd III R F et al.. Expression of immunologically relevant endothelial cell activation antigens on isolated central nervous system microvessels from patients with multiple sclerosis. Ann Neurol. 1994; 35 89-97
- 110 Cannella B, Raine C S. The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol. 1995; 37 424-435
- 111 Bo L, Peterson J W, Mork S et al.. Distribution of immunoglobulin superfamily members ICAM-1, -2, -3, and the beta 2 integrin LFA-1 in multiple sclerosis lesions. J Neuropathol Exp Neurol. 1996; 55 1060-1072
- 112 Stuve O, Marra C M, Cravens P D et al.. Potential risk of progressive multifocal leukoencephalopathy with natalizumab therapy: possible interventions. Arch Neurol. 2007; 64 169-176
- 113 Niino M, Bodner C, Simard M L et al.. Natalizumab effects on immune cell responses in multiple sclerosis. Ann Neurol. 2006; 59 748-754
- 114 Stuve O, Marra C M, Bar-Or A et al.. Altered CD4 + /CD8 + T-cell ratios in cerebrospinal fluid of natalizumab-treated patients with multiple sclerosis. Arch Neurol. 2006; 63 1383-1387
- 115 Stuve O, Marra C M, Jerome K R et al.. Immune surveillance in multiple sclerosis patients treated with natalizumab. Ann Neurol. 2006; 59 743-747
- 116 Brosnan C F, Cannella B, Battistini L, Raine C S. Cytokine localization in multiple sclerosis lesions: correlation with adhesion molecule expression and reactive nitrogen species. Neurology. 1995; 45 S16-S21
- 117 Damle N K, Klussman K, Leytze G et al.. Costimulation with integrin ligands intercellular adhesion molecule-1 or vascular cell adhesion molecule-1 augments activation-induced death of antigen-specific CD4 + T lymphocytes. J Immunol. 1993; 151 2368-2379
- 118 Moingeon P, Chang H C, Wallner B P et al.. CD2-mediated adhesion facilitates T lymphocyte antigen recognition function. Nature. 1989; 339 312-314
- 119 Man S, Ubogu E E, Ransohoff R M. Inflammatory cell migration into the central nervous system: a few new twists on an old tale. Brain Pathol. 2007; 17 243-250
- 120 Ubogu E E, Cossoy M B, Ransohoff R M. The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol Sci. 2006; 27 48-55
- 121 Karpus W J, Ransohoff R M. Chemokine regulation of experimental autoimmune encephalomyelitis: temporal and spatial expression patterns govern disease pathogenesis. J Immunol. 1998; 161 2667-2671
- 122 Hvas J, McLean C, Justesen J et al.. Perivascular T cells express the pro-inflammatory chemokine RANTES mRNA in multiple sclerosis lesions. Scand J Immunol. 1997; 46 195-203
- 123 Van Der Voorn P, Tekstra J, Beelen R H, Tensen C P, Van Der Valk P, De Groot C J. Expression of MCP-1 by reactive astrocytes in demyelinating multiple sclerosis lesions. Am J Pathol. 1999; 154 45-51
- 124 Sorensen T L, Tani M, Jensen J et al.. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest. 1999; 103 807-815
- 125 Siveke J T, Hamann A. T helper 1 and T helper 2 cells respond differentially to chemokines. J Immunol. 1998; 160 550-554
- 126 Balashov K E, Rottman J B, Weiner H L, Hancock W W. CCR5( + ) and CXCR3( + ) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci USA. 1999; 96 6873-6878
- 127 Misu T, Onodera H, Fujihara K et al.. Chemokine receptor expression on T cells in blood and cerebrospinal fluid at relapse and remission of multiple sclerosis: imbalance of Th1/Th2-associated chemokine signaling. J Neuroimmunol. 2001; 114 207-212
- 128 Nanki T, Lipsky P E. Lack of correlation between chemokine receptor and T(h)1/T(h)2 cytokine expression by individual memory T cells. Int Immunol. 2000; 12 1659-1667
- 129 Rebenko-Moll N M, Liu L, Cardona A, Ransohoff R M. Chemokines, mononuclear cells and the nervous system: heaven (or hell) is in the details. Curr Opin Immunol. 2006; 18 683-689
- 130 Krumbholz M, Theil D, Cepok S et al.. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain. 2006; 129 200-211
- 131 Yong V W, Krekoski C A, Forsyth P A et al.. Matrix metalloproteinases and diseases of the CNS. Trends Neurosci. 1998; 21 75-80
- 132 Kieseier B C, Seifert T, Giovannoni G, Hartung H P. Matrix metalloproteinases in inflammatory demyelination: targets for treatment. Neurology. 1999; 53 20-25
- 133 Kieseier B C, Pischel H, Neuen-Jacob E et al.. ADAM-10 and ADAM-17 in the inflamed human CNS. Glia. 2003; 42 398-405
- 134 Rosenberg G A, Kornfeld M, Estrada E et al.. TIMP-2 reduces proteolytic opening of blood-brain barrier by type IV collagenase. Brain Res. 1992; 576 203-207
- 135 Leppert D, Waubant E, Galardy R et al.. T cell gelatinases mediate basement membrane transmigration in vitro. J Immunol. 1995; 154 4379-4389
- 136 Cuzner M L, Gveric D, Strand C et al.. The expression of tissue-type plasminogen activator, matrix metalloproteases and endogenous inhibitors in the central nervous system in multiple sclerosis: comparison of stages in lesion evolution. J Neuropathol Exp Neurol. 1996; 55 1194-1204
- 137 Maeda A, Sobel R A. Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropathol Exp Neurol. 1996; 55 300-309
- 138 Hartung H P, Jung S, Stoll G et al.. Inflammatory mediators in demyelinating disorders of the CNS and PNS. J Neuroimmunol. 1992; 40 197-210
- 139 Black R A, Rauch C T, Kozlosky C J et al.. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997; 385 729-733
- 140 Proost P, Van Damme J, Opdenakker G. Leukocyte gelatinase B cleavage releases encephalitogens from human myelin basic protein. Biochem Biophys Res Commun. 1993; 192 1175-1181
- 141 Yong V W. Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci. 2005; 6 931-944
- 142 Yong V W, Zabad R K, Agrawal S et al.. Elevation of matrix metalloproteinases (MMPs) in multiple sclerosis and impact of immunomodulators. J Neurol Sci. 2007; 259 79-84
- 143 Cuzner M L, Davison A N, Rudge P. Proteolytic enzyme activity of blood leukocytes and cerebrospinal fluid in multiple sclerosis. Ann Neurol. 1978; 4 337-344
- 144 Gijbels K, Masure S, Carton H, Opdenakker G. Gelatinase in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological disorders. J Neuroimmunol. 1992; 41 29-34
- 145 Leppert D, Ford J, Stabler G et al.. Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during relapses and stable phases of multiple sclerosis. Brain. 1998; 121(Pt 12) 2327-2334
- 146 Lee M A, Palace J, Stabler G et al.. Serum gelatinase B, TIMP-1 and TIMP-2 levels in multiple sclerosis. A longitudinal clinical and MRI study. Brain. 1999; 122(Pt 2) 191-197
- 147 Bar-Or A, Nuttall R K, Duddy M et al.. Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain. 2003; 126 2738-2749
- 148 Alter A, Duddy M, Hebert S et al.. Determinants of human B cell migration across brain endothelial cells. J Immunol. 2003; 170 4497-4505
- 149 Nuttall R K, Silva C, Hader W et al.. Metalloproteinases are enriched in microglia compared with leukocytes and they regulate cytokine levels in activated microglia. Glia. 2007; 55 516-526
- 150 Wekerle H, Sun D, Oropeza-Wekerle R L, Meyermann R. Immune reactivity in the nervous system: modulation of T-lymphocyte activation by glial cells. J Exp Biol. 1987; 132 43-57
- 151 Hickey W F. Migration of hematogenous cells through the blood-brain barrier and the initiation of CNS inflammation. Brain Pathol. 1991; 1 97-105
- 152 Kivisäkk P, Mahad D J, Callahan M K et al.. Human cerebrospinal fluid central memory CD4 + T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci USA. 2003; 100 8389-8394
- 153 Becher B, Durell B G, Noelle R J. IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J Clin Invest. 2003; 112 1186-1191
- 154 Heppner F L, Greter M, Marino D et al.. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med. 2005; 11 146-152
- 155 Aloisi F, Ria F, Penna G, Adorini L. Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation. J Immunol. 1998; 160 4671-4680
- 156 Williams K, Ulvestad E, Antel J. Immune regulatory and effector properties of human adult microglia studies in vitro and in situ. Adv Neuroimmunol. 1994; 4 273-281
- 157 Ulvestad E, Williams K, Bjerkvig R et al.. Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J Leukoc Biol. 1994; 56 732-740
- 158 Kim H J, Ifergan I, Antel J P et al.. Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J Immunol. 2004; 172 7144-7153
- 159 Kreymborg K, Bohlmann U, Becher B. IL-23: changing the verdict on IL-12 function in inflammation and autoimmunity. Expert Opin Ther Targets. 2005; 9 1123-1136
- 160 Greter M, Heppner F L, Lemos M P et al.. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med. 2005; 11 328-334
- 161 Becher B, Bechmann I, Greter M. Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. J Mol Med. 2006; 84 532-543
- 162 Gutcher I, Becher B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest. 2007; 117 1119-1127
- 163 Miller S D, McMahon E J, Schreiner B, Bailey S L. Antigen presentation in the CNS by myeloid dendritic cells drives progression of relapsing experimental autoimmune encephalomyelitis. Ann N Y Acad Sci. 2007; 1103 179-191
- 164 Ubogu E E, Callahan M K, Tucky B H, Ransohoff R M. Determinants of CCL5-driven mononuclear cell migration across the blood-brain barrier. Implications for therapeutically modulating neuroinflammation. J Neuroimmunol. 2006; 179 132-144
- 165 Ifergan I, Kébir H, Bernard M et al.. The blood brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain. 2007; , December 20 (Epub ahead of print)
- 166 Corcione A, Casazza S, Ferretti E et al.. Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc Natl Acad Sci USA. 2004; 101 11064-11069
- 167 Williams K, Ulvestad E, Antel J P. B7/BB-1 antigen expression on adult human microglia studied in vitro and in situ. Eur J Immunol. 1994; 24 3031-3037
- 168 Windhagen A, Newcombe J, Dangond F et al.. Expression of costimulatory molecules B7-1 (CD80), B7-2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions. J Exp Med. 1995; 182 1985-1996
- 169 Genc K, Dona D L, Reder A T. Increased CD80( + ) B cells in active multiple sclerosis and reversal by interferon beta-1b therapy. J Clin Invest. 1997; 99 2664-2671
- 170 Racke M K, Scott D E, Quigley L et al.. Distinct roles for B7-1 (CD-80) and B7-2 (CD-86) in the initiation of experimental allergic encephalomyelitis. J Clin Invest. 1995; 96 2195-2203
- 171 Miller S D, Vanderlugt C L, Lenschow D J et al.. Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity. 1995; 3 739-745
- 172 Tuohy V K, Yu M, Yin L et al.. The epitope spreading cascade during progression of experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol Rev. 1998; 164 93-100
- 173 Giuliani F, Goodyer C G, Antel J P, Yong V W. Vulnerability of human neurons to T cell-mediated cytotoxicity. J Immunol. 2003; 171 368-379
- 174 Neumann H, Medana I M, Bauer J, Lassmann H. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci. 2002; 25 313-319
-
175 Darlington P, Podjaski C, Blain M et al.. Cellular immune-mediated neuronal injury consequent to loss of supporting astrocytes. Brain
- 176 Waxman S G. Nitric oxide and the axonal death cascade. Ann Neurol. 2003; 53 150-153
- 177 Lassmann H, Bruck W, Lucchinetti C F. The immunopathology of multiple sclerosis: an overview. Brain Pathol. 2007; 17 210-218
- 178 Lucchinetti C F, Parisi J, Bruck W. The pathology of multiple sclerosis. Neurol Clin. 2005; 23 77-105 , vi
- 179 Genain C P, Cannella B, Hauser S L, Raine C S. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med. 1999; 5 170-175
- 180 Piddlesden S J, Lassmann H, Zimprich F et al.. The demyelinating potential of antibodies to myelin oligodendrocyte glycoprotein is related to their ability to fix complement. Am J Pathol. 1993; 143 555-564
- 181 Pender M P. The pathogenesis of primary progressive multiple sclerosis: antibody-mediated attack and no repair?. J Clin Neurosci. 2004; 11 689-692
- 182 O'Connor K C, Appel H, Bregoli L et al.. Antibodies from inflamed central nervous system tissue recognize myelin oligodendrocyte glycoprotein. J Immunol. 2005; 175 1974-1982
- 183 Zhou D, Srivastava R, Nessler S et al.. Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosis. Proc Natl Acad Sci USA. 2006; 103 19057-19062
- 184 Lalive P H, Menge T, Delarasse C et al.. Antibodies to native myelin oligodendrocyte glycoprotein are serologic markers of early inflammation in multiple sclerosis. Proc Natl Acad Sci USA. 2006; 103 2280-2285
- 185 Menge T, Lalive P H, von Budingen H C et al.. Antibody responses against galactocerebroside are potential stage-specific biomarkers in multiple sclerosis. J Allergy Clin Immunol. 2005; 116 453-459
- 186 O'Connor K C, McLaughlin K A, De Jager P L et al.. Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein. Nat Med. 2007; 13 211-217
- 187 O'Connor K C, Chitnis T, Griffin D E et al.. Myelin basic protein-reactive autoantibodies in the serum and cerebrospinal fluid of multiple sclerosis patients are characterized by low-affinity interactions. J Neuroimmunol. 2003; 136 140-148
- 188 Berger T, Rubner P, Schautzer F et al.. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med. 2003; 349 139-145
- 189 Antel J P, Bar-Or A. Do myelin-directed antibodies predict multiple sclerosis?. N Engl J Med. 2003; 349 107-109
- 190 Miller D J, Asakura K, Rodriguez M. Experimental strategies to promote central nervous system remyelination in multiple sclerosis: insights gained from the Theiler's virus model system. J Neurosci Res. 1995; 41 291-296
- 191 Miller D J, Njenga M K, Murray P D et al.. A monoclonal natural autoantibody that promotes remyelination suppresses central nervous system inflammation and increases virus expression after Theiler's virus-induced demyelination. Int Immunol. 1996; 8 131-141
- 192 Li W, Walus L, Rabacchi S A et al.. A neutralizing anti-Nogo66 receptor monoclonal antibody reverses inhibition of neurite outgrowth by central nervous system myelin. J Biol Chem. 2004; 279 43780-43788
- 193 Bar-Or A, Oliveira E M, Anderson D E et al.. Immunological memory: contribution of memory B cells expressing costimulatory molecules in the resting state. J Immunol. 2001; 167 5669-5677
- 194 Duddy M E, Alter A, Bar-Or A. Distinct profiles of human B cell effector cytokines: a role in immune regulation?. J Immunol. 2004; 172 3422-3427
- 195 Anderson A C, Reddy J, Nazareno R et al.. IL-10 plays an important role in the homeostatic regulation of the autoreactive repertoire in naive mice. J Immunol. 2004; 173 828-834
- 196 Duddy M, Bar-Or A. B-cells in multiple sclerosis. Int MS J. 2006; 13 84-90
- 197 Prineas J W. Multiple sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science. 1979; 203 1123-1125
- 198 Serafini B, Rosicarelli B, Magliozzi R et al.. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004; 14 164-174
- 199 Duddy M, Niino M, Adatia F et al.. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol. 2007; 178 6092-6099
- 200 Bar-Or A, Calabresi P, Arnold D et al.. A phase l, open-label, multicenter study to evaluate the safety and activity of Rituximab in adults with relapsing-remitting multiple sclerosis (RRMS). Neurology 2007 S02.001
- 201 Hauser S, Waubant E, Arnold D et al.. A phase II randomized, placebo-controlled, multicenter trial of Rituximab in adults with relapsing remitting multiple sclerosis (RRMS). Neurology 2007 S12.003
- 202 Waxman S G. Acquired channelopathies in nerve injury and MS. Neurology. 2001; 56 1621-1627
- 203 Chari D M, Blakemore W F. New insights into remyelination failure in multiple sclerosis: implications for glial cell transplantation. Mult Scler. 2002; 8 271-277
- 204 Reddy H, Narayanan S, Matthews P M et al.. Relating axonal injury to functional recovery in MS. Neurology. 2000; 54 236-239
- 205 Weber M S, Starck M, Wagenpfeil S et al.. Multiple sclerosis: glatiramer acetate inhibits monocyte reactivity in vitro and in vivo. Brain. 2004; 127 1370-1378
- 206 Kerschensteiner M, Gallmeier E, Behrens L et al.. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation?. J Exp Med. 1999; 189 865-870
- 207 Stadelmann C, Kerschensteiner M, Misgeld T et al.. BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells?. Brain. 2002; 125 75-85
- 208 Arnett H A, Mason J, Marino M, Suzuki K, Matsushima G K, Ting J P. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci. 2001; 4 1116-1122
- 209 Miller D J, Rodriguez M. A monoclonal autoantibody that promotes central nervous system remyelination in a model of multiple sclerosis is a natural autoantibody encoded by germline immunoglobulin genes. J Immunol. 1995; 154 2460-2469
- 210 Reindl M, Khantane S, Ehling R et al.. Serum and cerebrospinal fluid antibodies to Nogo-A in patients with multiple sclerosis and acute neurological disorders. J Neuroimmunol. 2003; 145 139-147
- 211 Schwab M E. Nogo and axon regeneration. Curr Opin Neurobiol. 2004; 14 118-124
- 212 Herx L M, Rivest S, Yong V W. Central nervous system-initiated inflammation and neurotrophism in trauma: IL-1 beta is required for the production of ciliary neurotrophic factor. J Immunol. 2000; 165 2232-2239
- 213 Mason J L, Suzuki K, Chaplin D D, Matsushima G K. Interleukin-1beta promotes repair of the CNS. J Neurosci. 2001; 21 7046-7052
- 214 Wosik K, Antel J, Kuhlmann T et al.. Oligodendrocyte injury in multiple sclerosis: a role for p53. J Neurochem. 2003; 85 635-644
- 215 Niehaus A, Shi J, Grzenkowski M et al.. Patients with active relapsing-remitting multiple sclerosis synthesize antibodies recognizing oligodendrocyte progenitor cell surface protein: implications for remyelination. Ann Neurol. 2000; 48 362-371
-
216 Antel J P, Bar-Or A.
Multiple sclerosis: therapy . In: Lazzarini R Myelin Biology and Disorders. New York; Elsevier Academic Press 2004: 791-806
Amit Bar-OrM.D. F.R.C.P.C.
Neuroimmunology Unit, Montreal Neurological Institute, 3801 University Street
Room #111, Montreal, Quebec, Canada H3A 2B4
Email: amit.bar-or@mcgill.ca