Synlett 2007(4): 0575-0578  
DOI: 10.1055/s-2007-967962
LETTER
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Three-Component Coupling of Propargylic Oxiranes, Phenols and Carbon Dioxide

Masahiro Yoshida*a, Tomohiko Muraob, Kenji Sugimotob, Masataka Ihara*c
a Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
Fax: +81(88)6337294; e-Mail: yoshida@ph.tokushima-u.ac.jp;
b Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
c Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa 142-8501, Japan
Further Information

Publication History

Received 1 December 2006
Publication Date:
21 February 2007 (online)

Abstract

(Z)-1-Phenoxyalkenyl-substituted cyclic carbonates have been produced from three-component coupling of propargylic oxiranes, phenols and carbon dioxide in the presence of palladium catalyst. The scope and limitations of this reaction have been ­examined by using various phenols and propargylic oxiranes. A plausible mechanism for the reaction is also proposed.

    References and Notes

  • 1 Arakawa H. Aresta M. Armor JN. Barteau MA. Beckman EJ. Bell AT. Bercaw JE. Creutz C. Dinjus E. Dixon DA. Domen K. DuBois DL. Eckert J. Fujita E. Gibson DH. Goddard WA. Goodman DW. Keller J. Kubas GJ. Kung HH. Lyons JE. Manzer LE. Marks TJ. Morokuma K. Nicholas KM. Periana R. Que L. Rostrup-Nielson J. Sachtler WMH. Schmidt LD. Sen A. Somorjai GA. Stair PC. Stults BR. Chem. Rev.  2001,  101:  953 
  • For examples about palladium-catalyzed CO2-fixation reactions to give cyclic carbonates, see:
  • 2a Fujinami T. Suzuki T. Kamiya M. Fukuzawa S. Sakai S. Chem. Lett.  1985,  199 
  • 2b Trost BM. Angle SR. J. Am. Chem. Soc.  1985,  107:  6123 
  • 2c Trost BM. Lynch JK. Angle SR. Tetrahedron Lett.  1987,  28:  375 
  • 2d Wershofen S. Scharf HD. Synthesis  1988,  854 
  • 2e Suzuki S. Fujita Y. Kobayashi Y. Sato F. Tetrahedron Lett.  1989,  30:  3487 
  • 2f Uemura K. Shiraishi D. Noziri M. Inoue Y. Bull. Chem. Soc. Jpn.  1999,  72:  1063 
  • 2g Yoshida M. Ihara M. Angew. Chem. Int. Ed.  2001,  40:  616 
  • 2h Yoshida M. Fujita M. Ishii T. Ihara M. J. Am. Chem. Soc.  2003,  125:  4874 
  • 2i Yoshida M. Fujita M. Ihara M. Org. Lett.  2003,  5:  3325 
  • 2j Yoshida M. Ohsawa Y. Ihara M. J. Org. Chem.  2004,  69:  1590 
  • 2k Yoshida M. Ihara M. Chem. Eur. J.  2004,  2886 
  • 2l Yoshida M. Ohsawa Y. Ihara M. Tetrahedron  2006,  62:  11218 
  • 3a Yoshida M. Ueda H. Ihara M. Tetrahedron Lett.  2005,  46:  6705 
  • 3b Yoshida M. Morishita Y. Ihara M. Tetrahedron Lett.  2005,  46:  3669 
  • 6 The effect of bidentate ligands on the formation of π-propargylpalladium complex has been examined: Tsutsumi K. Kawase T. Kakiuchi K. Ogoshi S. Okada Y. Kurosawa H. Bull. Chem. Soc. Jpn.  1999,  72:  2687 
  • It is known that chiral allenes can be synthesized from palladium-catalyzed reactions of chiral propargylic compounds via stereoselective anti-SN2′ attack of palladium:
  • 8a Elsevier CJ. Stehouwer PM. Westmijze H. Vermeer P. J. Org. Chem.  1983,  48:  1103 
  • 8b Marshall JA. Adams ND. J. Org. Chem.  1997,  62:  367 
  • 8c Dixneuf PH. Guyot T. Ness MD. Roberts SM. Chem. Commun.  1997,  2083 
  • 8d Konno T. Tanikawa M. Ishihara T. Yamanaka H. Chem. Lett.  2000,  1360 
  • 9 Mechanistic studies about formation of π-propargylmetal complex have been reported: Nishida T. Ogoshi S. Tsutsumi K. Fukunishi Y. Kurosawa H. Organometallics  2000,  19:  4488 
  • 10a Casey CP. Nash JR. Yi CS. Selmeczy AD. Chung S. Powell DR. Hayashi RK. J. Am. Chem. Soc.  1998,  120:  722 
  • 10b Ogoshi S. Kurosawa H. J. Synth. Org. Chem., Jpn.  2003,  61:  14 
  • For examples of palladium-catalyzed decarboxylative reaction of alkynyl-substituted cyclic carbonates, see:
  • 11a Darcel C. Bartsch S. Bruneau C. Dixneuf PH. Synlett  1994,  457 
  • 11b Darcel C. Bruneau C. Dixneuf PH. J. Chem. Soc., Chem. Commun.  1994,  1845 
  • 11c Knight JG. Ainge SW. Baxtrer CA. Eastman TP. Harwood SJ. J. Chem. Soc., Perkin Trans. 1  2000,  3188 
4

General Procedure for the Palladium-Catalyzed Three-Component Coupling of Alkynylepoxides with Phenol and CO 2 (Table 1, Entry 12).: To a stirred solution of alkynylepoxide 1a (32.9 mg, 166 µmol) in dioxane, were added p-cresol (20.8 µL, 199 µmol), Pd2(dba)3·CHCl3 (8.6 mg, 8.3 µmol), dppp (13.7 mg, 33.2 µmol) and 3 Å MS (32.9 mg) at r.t., and stirring was continued for 20 h at 50 °C under CO2 atmosphere. After filtration of the reaction mixture through a Celite pad followed by evaporation of the solvent, the residue was chromatographed on silica gel with hexane-EtOAc (96:4) as eluent to give the cyclic carbonate 3aa (40.9 mg, 70%) as colorless needles; mp 84-86 °C (from hexane-EtOAc). IR (neat): 2947, 1807, 1504 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.38 (d, J = 1.7 Hz, 2 H), 7.18-7.26 (m, 3 H), 6.97 (d, J = 8.8 Hz, 2 H), 6.81 (d, J = 8.8 Hz, 2 H), 6.58 (s, 1 H), 4.85 (dd, J = 5.1, 5.4 Hz, 1 H), 2.22 (s, 3 H), 2.13-2.19 (m, 1 H), 1.83-2.03 (m, 3 H), 1.60-1.66 (m, 3 H), 1.43-1.47 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 154.3, 153.1, 147.3, 132.7, 131.8, 130.2, 129.3, 128.3, 128.0, 117.3, 114.8, 84.1, 77.7, 30.2, 26.3, 20.4, 18.8, 17.7. MS: m/z = 350 [M+]. Anal. Calcd for C22H22O4: C, 75.41; H, 6.35. Found: C, 75.35; H, 6.33.

5

Spectroscopic Data for 4a: colorless oil. IR (neat): 2947, 1809, 1491 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.32-7.47 (m, 5 H), 4.75 (dd, J = 5.12, 5.12 Hz, 1 H), 2.30-2.36 (m, 1 H), 2.11-2.18 (m, 1 H), 1.87-2.01 (m, 2 H), 1.72-1.78 (m, 1 H), 1.47-1.65 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 153.8, 131.9, 129.4, 128.4, 120.9, 88.3, 84.1, 80.2, 78.0, 34.2, 25.4, 20.0, 18.5. MS: m/z = 242 [M+]. HRMS: m/z [M+] calcd for C15H14O3: 242.0943; found: 242.0952.

7

In these reactions, trace amount of the corresponding (Z)-phenoxyalkenyl-substituted oxiranes (see ref. 3b) were obtained as byproducts.