Synlett 2007(8): 1203-1206  
DOI: 10.1055/s-2007-977416
LETTER
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthesis of 7-Substituted or 3,7-Disubstituted 1H-Indazoles

Betty Cottyna, Dominique Vichard*a, François Terriera, Pierre Niocheb, C. S. Ramanc
a Institut Lavoisier de Versailles, CNRS UMR 8180, Université de Versailles, 45, Avenue des Etats-Unis, 78035 Versailles Cedex, France
b Université René Descartes, 12, rue de l’Ecole de Médecine, 75270 Paris Cedex 06, France
c Department of Biochemistry & Molecular Biology, University of Texas, Medical School, 6431 Fannin Houston, TX 77030, USA
Fax: +33(1)39254452; e-Mail: vichard@chimie.uvsq.fr;
Further Information

Publication History

Received 10 January 2007
Publication Date:
03 April 2007 (online)

Abstract

This work reports on the synthesis of the novel indazole scaffolds 7-OTf-1H-indazole (trifluoromethanesulfonic acid 1H-­indazol-7-yl ester), 7-iodo-1H-indazole and 3-bromo-7-iodo-1H-indazole. These new compounds are potent building blocks in ­divergent syntheses of indazoles via palladium cross-coupling ­reactions.

    References and Notes

  • 1a For reviews, see: Elguero J. Pyrazoles and their Benzo Derivatives, In Comprehensive Heterocyclic Chemistry   Vol. 5:  Katritzky AR. Rees CW. Pergamon Press; Oxford: 1984.  p.167-303  
  • 1b Behr LC. Fusco R. Jacobe CH. In Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings   Wiley RH. Wiley Int.; New York: 1969. 
  • 1c Minkin VI. Glukhovtsev MN. Simkin BY. Aromaticity and Antiaromaticity, Electronic and Structural Aspects   Wiley; New York: 1994. 
  • As recent examples, see:
  • 2a Hartinger CG. Zorbas-Seifired S. Jakupec MA. Kynast B. Zorbas H. Keppler BK. J. Inorg. Biochem.  2006,  100:  891 
  • 2b Carella A. Vives G. Cox T. Jaud J. Rapenne G. Launay J. Eur. J. Inorg. Chem.  2006,  980 
  • As examples, see:
  • 3a Tanitame A. Oyamada Y. Ofuji K. Kyoya Y. Suzuki K. Ito H. Kawasaki M. Nagai K. Wachi M. Yamagishi JI. Bioorg. Med. Chem.  2004,  14:  2857 
  • 3b Iwakubo M. Takami A. Okada Y. Kawata T. Tagami Y. Ohashi H. Sato M. Sugiyama T. Fukushima K. Iijima H. Bioorg. Med. Chem.  2007, in press
  • 3c De Angelis M. Stossi F. Carlson KA. Katzenellenbogen BS. Katzenellenbogen JA. J. Med. Chem.  2005,  48:  1132 
  • 4 Lukin K. Hsu MC. Fernando D. Leanna MR. J. Org. Chem.  2006,  71:  8166 
  • 5a Collot V. Bovy RB. Rault S. Tetrahedron Lett.  2001,  41:  9053 
  • 5b Collot V. Dallemagne P. Bovy RB. Rault S. Tetrahedron  1999,  55:  6917 
  • 6a El Kazzouli S. Bouissane L. Khouili M. Guillaumet G. Tetrahedron Lett.  2005,  46:  6163 
  • 6b Bouissane L. El Kazzouli S. Léger JM. Jarry C. Rakib EM. Khouili M. Guillaumet G. Tetrahedron  2005,  61:  8218 
  • 6c Bouissane L. El Kazzouli S. Léonce S. Pfeiffer B. Rakib EM. Khouili M. Guillaumet G. Bioorg. Med. Chem.  2006,  14:  1078 
  • 7 Raman CS. Li H. Martasek P. Southan G. Masters BS. Poulos TL. Biochemistry  2001,  40:  13448 
  • 8 Schumann P. Collot V. Hommet Y. Gsell W. Dauphin F. Sopkova J. MacKenzie ET. Duval D. Boulouard M. Rault S. Bioorg. Med. Chem. Lett.  2001,  11:  1153 
  • 10 Ritter K. Synthesis  1993,  735 
  • 11a Comins DL. Dehghani A. Tetrahedron Lett.  1992,  33:  6299 
  • 11b Comins DL. Dehghani A. Foti CJ. Joseph SP. Org. Synth.  1998,  Coll. Vol. IX:  165 
  • 12a Porter HD. Peterson WD. Org. Synth.  1955,  Coll. Vol. III:  660 
  • 12b Doyle MP. Bryker WJ. J. Org. Chem.  1979,  44:  1572 
  • 12c Boulton BE. Coller BAW. Aust. J. Chem.  1974,  27:  2343 
  • 12d Suzuki N. Kaneko Y. Nomoto T. Isawa Y. Chem. Commun.  1984,  1523 
  • 12e Doyle MP. Siegfried B. Elliot RC. Dellaria JF. J. Org. Chem.  1977,  42:  2431 
  • 13 For 4: mp 114.2 °C. MS (EI): m/z = 117 [M - I]+·, 127 [I+·], 244 [M+·]. Anal. Calcd for C7H5N2I: C, 34.43; H, 2.05; N, 11.47. Found: C, 34.46; H, 1.93; N, 11.38. 1H NMR (200 MHz, CDCl3): δ = 8.25 (s, 1 H), 7.77, 7.73 (2 × dd, 3 J = 7.5 Hz, 4 J = 0.9 Hz, 2 H), 7.55 (br s, 1 H), 6.97 (dd, J = 7.5, 7.5 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 142.4, 136.3, 135.6, 123.2, 122.7, 121.0, 115.7
  • 15 Noelting E. Ber. Dtsch. Chem. Ges.  1904,  37:  2584 
  • 16 Tsuji J. In Palladium Reagents and Catalysts, New Perspectives for the 21st Century   Wiley RH. Wiley Int.; New York: 2004. 
  • 17a Anderson BA. Bell EC. Ginah FO. Harn NK. Pagh LM. Wepsiec JP. J. Org. Chem.  1998,  63:  8224 
  • 17b Sundermeier M. Zapf A. Mutyala S. Baumann W. Sans J. Weiss S. Beller M. Chem. Eur. J.  2003,  9:  1828 
  • 17c Ma D. Tian H. J. Chem. Soc., Perkin Trans. 1  1997,  3493 
  • 18 Kumar K. Zapf A. Michalik D. Tillac A. Heinrich T. Böttcher H. Arlt M. Beller M. Org. Lett.  2004,  6:  7 
  • 19a Gilchrist TL. Heterocycl. Chem.  1997,  315 
  • 19b Elguero J. Fruchier A. Jacquier R. Bull. Soc. Chim. Fr.  1966,  9:  3401 
  • 19c Elguero J. Fruchier A. Jacquier R. Bull. Soc. Chim. Fr.  1966,  2075 
  • 20a Kubota H. Rice KC. Tetrahedron Lett.  1998,  39:  2907 
  • 20b Frantz DE. Weaver DG. Carey JP. Kress MH. Dolling UH. Org. Lett.  2002,  4:  4717 
  • 20c Jin F. Confalone PN. Tetrahedron Lett.  2000,  41:  3271 
  • 22 Lazaro R. Bouchet P. Elguero J. ACH Models Chem.  1999,  136:  497 
  • For examples, see:
  • 24a Chapman GM. Stanforth SP. Tarbit B. Watson MD. J. Chem. Soc., Perkin Trans. 1  2002,  581 
  • 24b Tao W. Nesbitt S. Heck RF. J. Org. Chem.  1990,  55:  63 
9

For 3: mp 94 °C. MS (CI-CH4): m/z = 267 [M + H+]. HRMS: m/z [M + NH4 +] calcd for C8H5N2F3O3S: 326.0422; found: 326.0424. 1H NMR (200 MHz, acetone-d 6): δ = 8.27 (s, 1 H), 7.93 (2 × d, J = 9.2 Hz, 2 H), 7.50 (s, 1 H), 7.27 (t, J = 9.2 Hz, 1 H). 19F NMR (188 MHz, acetone-d 6): δ = -68.92 (s). 13C NMR (75 MHz, acetone-d 6): δ = 128.4, 122.9, 122.5, 121.8, 119.4, 119.0, 115.8, 116.5.

14

To a solution of 2-methyl-6-nitroaniline (5.00 g, 32.9 mmol) in glacial AcOH (235 mL) was added all at once a solution of sodium nitrite (2.27 g, 32.9 mmol) in H2O (5.5 mL). During this addition the temperature was not allowed to rise above 25 °C. After the nitrite solution had been added, stirring was maintained for 20 min. Any yellow precipitate formed during this time was filtered and discarded. Then, the solution was evaporated in vacuo. Cold H2O was added to the residue and the contents of the flask were washed into a beaker where they were stirred. The product was filtered, rinsed with cold H2O and dried to afford 7-nitro-1H-indazole (5.29 g, 98% yield); mp 180 °C.

21

For 10: mp 160.7 °C. MS (EI): m/z = 143 [M+]. HRMS: m/z [M + H]+ calcd for C8H6N3: 144.0562; found: 144.0565. 1H NMR (200 MHz, acetone-d 6): δ = 13.14 (br s, 1 H), 8.28 (s, 1 H), 8.18, 7.87 (2 × d, J = 13.3 Hz, 2 H), 7.32 (t, J = 13.3 Hz, 1 H). 13C NMR (75 MHz, acetone-d 6): δ = 136.2, 132.8, 135.5, 127.5, 125.2, 121.5, 116.9, 94.9.

23

For 12: mp 77.5 °C. MS (EI): m/z =142 [M+·]. HRMS (TOF-MS, ES+): m/z [M + H+] calcd for C9H7N2: 143.0609; found: 143.0620. 1H NMR (200 MHz, CDCl3): δ = 10.70 (br s, 1 H), 8.15 (s, 1 H), 7.78, 7.56 (2 × d, J = 8.1 Hz, 2 H), 7.15 (t, J = 8.1 Hz, 1 H), 3.46 (s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 134.0, 130.8, 122.8, 122.2, 122.1, 121.1, 104.5, 82.5, 79.2. For 5: mp 160.9 °C. MS (EI): m/z = 323 [M+·], 243 [M+· - Br·]+, 116 [M+· - Br· - I·]+. Anal. Calcd for C7H4N2IBr: C, 26.01; H, 1.24; N, 8.67. Found: C, 26.23; H, 1.28; N, 8.61. 1H NMR (200 MHz, CDCl3): δ = 10.10 (br s, 1 H), 7.81, 7.63 (2 × d, J = 8.0 Hz, 2 H), 7.03 (t, J = 8.0 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 143.1, 136.67, 131.12, 124.26, 123.46, 120.43, 112.20.