References and Notes
1a For reviews, see: Elguero J.
Pyrazoles and their Benzo Derivatives, In Comprehensive Heterocyclic Chemistry
Vol. 5:
Katritzky AR.
Rees CW.
Pergamon Press;
Oxford:
1984.
p.167-303
1b
Behr LC.
Fusco R.
Jacobe CH.
In Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings
Wiley RH.
Wiley Int.;
New York:
1969.
1c
Minkin VI.
Glukhovtsev MN.
Simkin BY.
Aromaticity and Antiaromaticity, Electronic and Structural Aspects
Wiley;
New York:
1994.
As recent examples, see:
2a
Hartinger CG.
Zorbas-Seifired S.
Jakupec MA.
Kynast B.
Zorbas H.
Keppler BK.
J. Inorg. Biochem.
2006,
100:
891
2b
Carella A.
Vives G.
Cox T.
Jaud J.
Rapenne G.
Launay J.
Eur. J. Inorg. Chem.
2006,
980
As examples, see:
3a
Tanitame A.
Oyamada Y.
Ofuji K.
Kyoya Y.
Suzuki K.
Ito H.
Kawasaki M.
Nagai K.
Wachi M.
Yamagishi JI.
Bioorg. Med. Chem.
2004,
14:
2857
3b
Iwakubo M.
Takami A.
Okada Y.
Kawata T.
Tagami Y.
Ohashi H.
Sato M.
Sugiyama T.
Fukushima K.
Iijima H.
Bioorg. Med. Chem.
2007, in press
3c
De Angelis M.
Stossi F.
Carlson KA.
Katzenellenbogen BS.
Katzenellenbogen JA.
J. Med. Chem.
2005,
48:
1132
4
Lukin K.
Hsu MC.
Fernando D.
Leanna MR.
J. Org. Chem.
2006,
71:
8166
5a
Collot V.
Bovy RB.
Rault S.
Tetrahedron Lett.
2001,
41:
9053
5b
Collot V.
Dallemagne P.
Bovy RB.
Rault S.
Tetrahedron
1999,
55:
6917
6a
El Kazzouli S.
Bouissane L.
Khouili M.
Guillaumet G.
Tetrahedron Lett.
2005,
46:
6163
6b
Bouissane L.
El Kazzouli S.
Léger JM.
Jarry C.
Rakib EM.
Khouili M.
Guillaumet G.
Tetrahedron
2005,
61:
8218
6c
Bouissane L.
El Kazzouli S.
Léonce S.
Pfeiffer B.
Rakib EM.
Khouili M.
Guillaumet G.
Bioorg. Med. Chem.
2006,
14:
1078
7
Raman CS.
Li H.
Martasek P.
Southan G.
Masters BS.
Poulos TL.
Biochemistry
2001,
40:
13448
8
Schumann P.
Collot V.
Hommet Y.
Gsell W.
Dauphin F.
Sopkova J.
MacKenzie ET.
Duval D.
Boulouard M.
Rault S.
Bioorg. Med. Chem. Lett.
2001,
11:
1153
9 For 3: mp 94 °C. MS (CI-CH4): m/z = 267 [M + H+]. HRMS: m/z [M + NH4
+] calcd for C8H5N2F3O3S: 326.0422; found: 326.0424. 1H NMR (200 MHz, acetone-d
6): δ = 8.27 (s, 1 H), 7.93 (2 × d, J = 9.2 Hz, 2 H), 7.50 (s, 1 H), 7.27 (t, J = 9.2 Hz, 1 H). 19F NMR (188 MHz, acetone-d
6): δ = -68.92 (s). 13C NMR (75 MHz, acetone-d
6): δ = 128.4, 122.9, 122.5, 121.8, 119.4, 119.0, 115.8, 116.5.
10
Ritter K.
Synthesis
1993,
735
11a
Comins DL.
Dehghani A.
Tetrahedron Lett.
1992,
33:
6299
11b
Comins DL.
Dehghani A.
Foti CJ.
Joseph SP.
Org. Synth.
1998,
Coll. Vol. IX:
165
12a
Porter HD.
Peterson WD.
Org. Synth.
1955,
Coll. Vol. III:
660
12b
Doyle MP.
Bryker WJ.
J. Org. Chem.
1979,
44:
1572
12c
Boulton BE.
Coller BAW.
Aust. J. Chem.
1974,
27:
2343
12d
Suzuki N.
Kaneko Y.
Nomoto T.
Isawa Y.
Chem. Commun.
1984,
1523
12e
Doyle MP.
Siegfried B.
Elliot RC.
Dellaria JF.
J. Org. Chem.
1977,
42:
2431
13 For 4: mp 114.2 °C. MS (EI): m/z = 117 [M - I]+·, 127 [I+·], 244 [M+·]. Anal. Calcd for C7H5N2I: C, 34.43; H, 2.05; N, 11.47. Found: C, 34.46; H, 1.93; N, 11.38. 1H NMR (200 MHz, CDCl3): δ = 8.25 (s, 1 H), 7.77, 7.73 (2 × dd, 3
J = 7.5 Hz, 4
J = 0.9 Hz, 2 H), 7.55 (br s, 1 H), 6.97 (dd, J = 7.5, 7.5 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 142.4, 136.3, 135.6, 123.2, 122.7, 121.0, 115.7
14 To a solution of 2-methyl-6-nitroaniline (5.00 g, 32.9 mmol) in glacial AcOH (235 mL) was added all at once a solution of sodium nitrite (2.27 g, 32.9 mmol) in H2O (5.5 mL). During this addition the temperature was not allowed to rise above 25 °C. After the nitrite solution had been added, stirring was maintained for 20 min. Any yellow precipitate formed during this time was filtered and discarded. Then, the solution was evaporated in vacuo. Cold H2O was added to the residue and the contents of the flask were washed into a beaker where they were stirred. The product was filtered, rinsed with cold H2O and dried to afford 7-nitro-1H-indazole (5.29 g, 98% yield); mp 180 °C.
15
Noelting E.
Ber. Dtsch. Chem. Ges.
1904,
37:
2584
16
Tsuji J. In Palladium Reagents and Catalysts, New Perspectives for the 21st Century
Wiley RH.
Wiley Int.;
New York:
2004.
17a
Anderson BA.
Bell EC.
Ginah FO.
Harn NK.
Pagh LM.
Wepsiec JP.
J. Org. Chem.
1998,
63:
8224
17b
Sundermeier M.
Zapf A.
Mutyala S.
Baumann W.
Sans J.
Weiss S.
Beller M.
Chem. Eur. J.
2003,
9:
1828
17c
Ma D.
Tian H.
J. Chem. Soc., Perkin Trans. 1
1997,
3493
18
Kumar K.
Zapf A.
Michalik D.
Tillac A.
Heinrich T.
Böttcher H.
Arlt M.
Beller M.
Org. Lett.
2004,
6:
7
19a
Gilchrist TL.
Heterocycl. Chem.
1997,
315
19b
Elguero J.
Fruchier A.
Jacquier R.
Bull. Soc. Chim. Fr.
1966,
9:
3401
19c
Elguero J.
Fruchier A.
Jacquier R.
Bull. Soc. Chim. Fr.
1966,
2075
20a
Kubota H.
Rice KC.
Tetrahedron Lett.
1998,
39:
2907
20b
Frantz DE.
Weaver DG.
Carey JP.
Kress MH.
Dolling UH.
Org. Lett.
2002,
4:
4717
20c
Jin F.
Confalone PN.
Tetrahedron Lett.
2000,
41:
3271
21 For 10: mp 160.7 °C. MS (EI): m/z = 143 [M+]. HRMS: m/z [M + H]+ calcd for C8H6N3: 144.0562; found: 144.0565. 1H NMR (200 MHz, acetone-d
6): δ = 13.14 (br s, 1 H), 8.28 (s, 1 H), 8.18, 7.87 (2 × d, J = 13.3 Hz, 2 H), 7.32 (t, J = 13.3 Hz, 1 H). 13C NMR (75 MHz, acetone-d
6): δ = 136.2, 132.8, 135.5, 127.5, 125.2, 121.5, 116.9, 94.9.
22
Lazaro R.
Bouchet P.
Elguero J.
ACH Models Chem.
1999,
136:
497
23 For 12: mp 77.5 °C. MS (EI): m/z =142 [M+·]. HRMS (TOF-MS, ES+): m/z [M + H+] calcd for C9H7N2: 143.0609; found: 143.0620. 1H NMR (200 MHz, CDCl3): δ = 10.70 (br s, 1 H), 8.15 (s, 1 H), 7.78, 7.56 (2 × d, J = 8.1 Hz, 2 H), 7.15 (t, J = 8.1 Hz, 1 H), 3.46 (s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 134.0, 130.8, 122.8, 122.2, 122.1, 121.1, 104.5, 82.5, 79.2. For 5: mp 160.9 °C. MS (EI): m/z = 323 [M+·], 243 [M+· - Br·]+, 116 [M+· - Br· - I·]+. Anal. Calcd for C7H4N2IBr: C, 26.01; H, 1.24; N, 8.67. Found: C, 26.23; H, 1.28; N, 8.61. 1H NMR (200 MHz, CDCl3): δ = 10.10 (br s, 1 H), 7.81, 7.63 (2 × d, J = 8.0 Hz, 2 H), 7.03 (t, J = 8.0 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 143.1, 136.67, 131.12, 124.26, 123.46, 120.43, 112.20.
For examples, see:
24a
Chapman GM.
Stanforth SP.
Tarbit B.
Watson MD.
J. Chem. Soc., Perkin Trans. 1
2002,
581
24b
Tao W.
Nesbitt S.
Heck RF.
J. Org. Chem.
1990,
55:
63