Subscribe to RSS
DOI: 10.1055/s-2007-980348
Traces of Water as a Key Parameter for the Formation of an Epoxydithio Compound
Publication History
Publication Date:
23 May 2007 (online)
![](https://www.thieme-connect.de/media/synlett/200709/lookinside/thumbnails/10.1055-s-2007-980348-1.jpg)
Abstract
The presence of a small amount of water has proven to be necessary in order to obtain a reproducible amount of an epoxydithio compound. Conversely, under anhydrous conditions, an interesting thiosugar derivative results from a selective internal attack of sulfur, followed by an ‘ethyl’ transfer.
Key words
carbohydrates - epoxides - ring closure - sulfur - water
-
1a
Guillarme S.Plé K.Haudrechy A. J. Org. Chem. 2006, 71: 1015 -
1b
Guillarme S.Haudrechy A. Tetrahedron Lett. 2005, 46: 3175 -
2a
Leung LMH.Boydell AJ.Gibson V.Light ME.Linclau B. Org. Lett. 2005, 7: 5183 -
2b
Smith AB.Pitram SM.Boldi AM.Gaunt MJ.Sfouggatakis C.Moser WH. J. Am. Chem. Soc. 2003, 125: 14435 -
2c
Smith AB.Pitram SM.Fuertes MJ. Org. Lett. 2003, 5: 2751 -
2d
Shiono H.Mochizuki Y.Tsutsui H.Mikami Y.Morohoshi T.Mitsunobu O. Synlett 2003, 894 -
2e
Terauchi T.Terauchi T.Sato I.Tsukada T.Kanoh N.Nakata M. Tetrahedron Lett. 2000, 41: 2649 -
2f
Gros P.Hansen P.Caubère P. Tetrahedron 1996, 52: 15147 -
2g
Krohn K.Boerner G. J. Org. Chem. 1994, 59: 6063 -
2h
Khandekar G.Robinson GC.Stacey NA.Thomas EJ.Vather S. J. Chem. Soc., Perkin Trans. 1 1993, 1507 -
2i
Golinski M.Vasudevan S.Floresca R.Brock CP.Watt DS. Tetrahedron Lett. 1993, 34: 55 -
2j
Adam G.Zibuck R.Seebach D. J. Am. Chem. Soc. 1987, 109: 6176 -
2k
Sviridov AF.Ermolenko MS.Yashunsky DV.Borodkin VS.Kochetkov NK. Tetrahedron Lett. 1987, 28: 3835 -
2l
Culshaw D.Grice P.Ley SV.Strange GA. Tetrahedron Lett. 1985, 26: 3835 -
2m
Ferrier RJ.Haines SR. Carbohydr. Res. 1984, 130: 135 -
2n
Ferrier RJ.Prasit P.Tyler PC. J. Chem. Soc., Perkin Trans. 1 1983, 1641 -
2o
Mori M.Chuman T.Kato K.Mori K. Tetrahedron Lett. 1982, 23: 4593 -
2p
Hungerbühler E.Naef R.Wasmuth D.Seebach D.Lossli H.-R.Wehrli A. Helv. Chim. Acta 1980, 63: 1960 -
2q
Senring B.Seebach D. Liebigs Ann. 1978, 2044 -
2r
Seebach D.Willert I.Beck AK.Gröbel B.-T. Helv. Chim. Acta 1978, 61: 2510 -
2s
Djerassi C.Batres E.Velasco M.Rosenkranz G. J. Am. Chem. Soc. 1952, 74: 1712 -
3a
Semmelhack MF.Epa WR.Cheung AW.-H.Gu Y.Kim C.Zhang N.Lew W. J. Am. Chem. Soc. 1994, 116: 7455 -
3b
Sunay U.Fraser-Reid B. Tetrahedron Lett. 1986, 27: 5335 -
3c
Meyers AI.Babiak KA.Campbell AL.Comins DL.Fleming MP.Henning R.Heuschmann M.Hudspeth JP.Kane JM.Reider PJ.Roland DM.Shimizu K.Tomioka K.Walkup RD. J. Am. Chem. Soc. 1983, 105: 5015 ; and references cited therein - 5
Knipe AC. In The Chemistry of the Sulphonium GroupStirling CJM. John Wiley and Sons; New York: 1981. p.313-385 - For examples, see:
-
8a
Svansson L.Johnston BD.Gu J.-H.Patrick B.Pinto BM. J. Am. Chem. Soc. 2000, 122: 10769 -
8b
Bozo E.Boros S.Kuszmann J. Carbohydr. Res. 1998, 311: 191 -
8c
Bozo E.Boros S.Kuszmann J. Carbohydr. Res. 1997, 302: 149 -
8d
Lépine C.Roy C.Delorme D. Tetrahedron Lett. 1994, 35: 1843 -
8e
Hashimoto H.Izumi M. Tetrahedron Lett. 1993, 34: 4949 -
8f
Yuasa H.Hindsgaul O.Palcic MM. J. Am. Chem. Soc. 1992, 114: 5891 -
8g
Mehta S.Pinto BM. Tetrahedron Lett. 1992, 33: 7675 -
8h
Wong CH.Krach T.Gautheron-Le Narvor C.Ichikawa Y.Look GC.Gaeta F.Thompson D.Nicolaou KC. Tetrahedron Lett. 1991, 32: 4867 -
8i
Hashimoto H.Fujimori T.Yuasa H. Carbohydr. Res. 1990, 9: 683 -
8j
Capon RJ.MacLeod JK. J. Chem. Soc., Chem. Commun. 1987, 15: 1200 -
8k
Hugues NA.Munkombwe NM. Carbohydr. Res. 1985, 136: 397 -
8l
Anisuzzama AKM.Whistler RL. Carbohydr. Res. 1977, 55: 205 -
8m
Hellman B.Lernmark A.Sehlin J.Taljedal JB.Whistler RL. Biochem. Pharmacol. 1973, 22: 29 -
8n
Nayak UG.Whistler RL. J. Org. Chem. 1969, 34: 97 - 9
Nasi R.Pinto MR. Carbohydr. Res. 2006, 341: 2305
References and Notes
Experimental procedure for 3: Compound 1 (780 mg, 1.1 mmol) was treated at 0 °C with KOH (123 mg, 2.2 mmol) in dry MeOH (11 mL). The solution was stirred at r.t. for 12 h. The solvent was then removed under reduced pressure and the residue was washed with H2O and Et2O. The organic layer was dried over MgSO4 and evaporated. The crude product was purified by silica gel column chromatography (pentane-EtOAc, 9:1) to give the β-thiosugar 3 (506 mg, 0.94 mmol, 85%). IR (film): 3087, 3063, 3029, 2963, 2923, 2869, 1496, 1454, 1373, 1264, 1207, 1072, 1028, 735, 698 cm-1; 1H NMR (500 MHz, CDCl3): δ = 7.2-7.4 (m, 15 H), 4.98 (d, J = 1.2 Hz, 1 H), 4.26-4.64 (6 d, J = 11.8, 12.1, 12.1, 11.8, 12.3, 12.3 Hz, 6 H), 3.97 (ddd, J = 2.1, 9.0, 9.7 Hz, 1 H), 3.67 (dd, J = 2.9, 3.2 Hz, 1 H), 3.62 (dd, J = 2.9, 9.7 Hz, 1 H), 3.58 (dd, J = 1.2, 3.2 Hz, 1 H), 2.85 (dd, J = 2.1, 14.0 Hz, 1 H), 2.73 (q, J = 7.5 Hz, 2 H), 2.64 (m, 3 H), 1.32 (t, J = 7.5 Hz, 3 H), 1.23 (t, J = 7.5 Hz, 3 H); 13C NMR (125 MHz, CDCl3): δ = 137.7-138.1, 127.8-128.4, 82.0, 78.2, 76.9, 75.7, 73.6, 72.8, 72.3, 71.5, 33.6, 27.2, 25.7, 15.3, 15.0; HRMS (ESI): m/z [M + Na] calcd for C31H38O4NaS2: 561.2109; found: 561.2103. Anal. Calcd for C31H38O4S2: C, 69.11; H, 7.12. Found: C, 69.23; H, 7.42. (The β-con-figuration was determined by ROESY).
6In reference 2g, Krohn and Boerner added water to their reaction mixture in order to obtain an epoxydithio compound without any discussion on this particular point.
7Experimental procedure for 2: Compound 1 (120 mg, 0.170 mmol) was treated at 0 °C with KOH (19.7 mg, 0.34 mmol) in MeOH-H2O (1.7 mL, 99:1). The solution was stirred at r.t. for 3 h. The solvent was then removed under reduced pressure and the residue was washed with H2O and Et2O. The organic layer was dried (MgSO4) and evaporated to give the crude epoxydithio compound 2 (90.6 mg, 0.167 mmol, 98%). IR (film): 3088, 3063, 3030, 2964, 2923, 2868, 1732, 1497, 1455, 1357, 1264, 1208, 1070, 846, 734, 698 cm-1; 1H NMR (500 MHz, CDCl3): δ = 7.40-7.26 (m, 15 H), 4.90-4.73 (4d, J = 10.9, 11.1, 11.1, 10.9 Hz, 4 H), 4.66 (2d, J = 11.9, 11.9 Hz, 2 H), 4.54 (d, J = 12.0 Hz, 1 H), 4.23 (dd, J = 3.2, 6.8 Hz, 1 H), 4.01 (dd, J = 4.0, 6.8 Hz, 1 H), 3.93 (d, J = 4.0 Hz, 1 H), 3.42 (dd, J = 3.2, 5.7 Hz, 1 H), 3.39-3.34 (m, 1 H), 2.78-2.57 (m, 6 H), 1.20 (t, J = 1.2 Hz, 6 H); 13C NMR (125 MHz, CDCl3): δ = 138.6, 138.2, 138.1, 128.3, 128.1, 128.0, 127.9, 127.6, 127.5, 127.4, 127.3, 82.9, 82.3, 78.7, 75.6, 75.1, 72.3, 53.6, 50.7, 45.2, 25.4, 24.9, 14.5, 14.3; HRMS (ESI): m/z [M + Na] calcd for C31H38O4NaS2: 561.2109; found: 561.2111.