Subscribe to RSS
DOI: 10.1055/s-2007-980353
Three-Component Barbier Allylation, Friedel-Crafts Alkylation and Intramolecular Hydroalkoxylation in an Ionic Liquid for the Direct Synthesis of 4-Arylchromans
Publication History
Publication Date:
23 May 2007 (online)
Abstract
4-Arylchromans can be synthesized directly using a one-pot Barbier allylation, Friedel-Crafts alkylation and intramolecular hydroalkoxylation of aromatic aldehydes, allylbromides and phenols in an ionic liquid (BPyX-SnCl2·2H2O). The intramolecular hydroalkoxylation of 4-aryl-4-(2-hydroxylphenyl)but-1-enes can be promoted using the Lewis acid ZnCl2 in an ionic liquid.
Key words
Barbier - Friedel-Crafts - hydroalkoxylation - one-pot process - 4-arylchroman - ionic liquid
-
1a
Browers WS.Ohta T.Cleere JS.Marsella PA. Science 1976, 193: 542 -
1b
Ellis GP.Lockhart IM. Chromanes and Tocopherols Wiley-Interscience; New York: 1981. - 2
Ogundaini A.Farah M.Perera P. J. Nat. Prod. 1996, 59: 587 - 3
Hajela K.Pandey J.Dwivedy A.Dhar JD.Sarkhel S.Maulik PR.Velumurugan D. Bioorg. Med. Chem. 1999, 7: 2083 - 4
Quaglia W.Pigini M.Piergentili A.Giannella M.Gentilli F.Marrucci G.Carrieri A.Carotti A.Pogges E.Leonardi A.Melchiorre C. J. Med. Chem. 2002, 45: 1633 -
5a
Deng J.-Z.Starck SR.Li S.Hecht SM. J. Nat. Prod. 2005, 68: 1625 -
5b
Maloney DJ.Starck SR.Gao Z.Hechit SM. J. Am. Chem. Soc. 2005, 127: 4140 -
5c
Sawadjoon S.Kittikara K.Vichai V.Tanticharoen M.Thebta-Ranonth Y. J. Org. Chem. 2002, 67: 5470 - For example, see:
-
6a
Larock RC.Yang H.Pace P. Tetrahedron Lett. 1998, 39: 237 -
6b
Trost BM.Asakawa N. Synthesis 1999, 1491 -
6c
Nicolaou KC.Pfefferkorn JA.Barluenga S.Mitchell HJ.Roecker AJ.Cao G.-Q. J. Am. Chem. Soc. 2000, 122: 9968 -
6d
Barluenga J.Trincado M.Rubio E.Gonzalez JM. J. Am. Chem. Soc. 2004, 126: 3416 -
6e
Merchaet A.Delbeke P.Daloze D.Dive G. Tetrahedron Lett. 2004, 45: 4697 -
6f
Trost BM.Shen HC.Surivet J.-P. J. Am. Chem. Soc. 2004, 126: 12565 -
6g
Vyvyan JR.Oaksmith JM.Parks BW.Peterson EM. Tetrahedron Lett. 2005, 46: 2457 -
7a
Shiina I.Suzuki M.Yokoyama K. Tetrahedron Lett. 2002, 43: 6395 -
7b
Shiina I.Suzuki M.Yokoyama K. Tetrahedron Lett. 2004, 45: 965 -
7c
Mertines K.Iovel I.Kischel J.Zapf A.Beller M. Angew. Chem. Int. Ed. 2005, 44: 238 - 8 For a review on the Barbier reaction, see:
Yamamoto Y.Asao N. Chem. Rev. 1993, 93: 2207 -
9a
Multicomponent Reactions
Zhu J.Bienayme H. Wiley-VCH; Weinheim: 2005. -
9b
Tietze LF. Chem. Rev. 1996, 96: 115 - 10
Zhao XL.Liu L.Chen YJ.Wang D. Tetrahedron 2006, 62: 7113 -
11a
Masuyama Y.Kishida M.Kurusu Y. Tetrahedron Lett. 1996, 37: 7103 -
11b
Masuyama Y.Ito A.Kurusu Y. Chem. Commun. 1998, 315 -
11c
Masuyama Y.Ito T.Tachi K.Ito A.Kurusu Y. Chem. Commun. 1999, 1261 -
11d
Ito A.Kishida M.Kurusu Y.Masuyama Y. J. Org. Chem. 2000, 65: 494 - 12
Wasserscheid P.Waffenschmidt H. J. Mol. Catal. A: Chem. 2000, 164: 61 - For examples of three-component reactions in ionic liquid, see:
-
13a Aza-Diels-Alder reaction:
Yadav JS.Reddy BVS.Reddy JSS.Rao RS. Tetrahedron 2003, 59: 1599 -
13b Coupling reaction of aldehyde, alkyne and amine:
Li Z.Wei C.Chen L.Varma RS.Li C.-J. Tetrahedron Lett. 2004, 45: 2443 -
13c Mannich reaction:
Kabalka GW.Venkataiah B.Dong G. Tetrahedron Lett. 2004, 45: 729 -
13d Asymmetric Mannich reaction:
Chen S.-L.Ji S.-J.Loh T.-P. Tetrahedron Lett. 2003, 44: 2405 -
13e Biginelli reaction:
Peng J.Deng Y. Tetrahedron Lett. 2001, 42: 5917 -
14a
Coulombel L.Dunach E. Green Chem. 2004, 6: 499 -
14b
Rosenfeld DC.Shekhar S.Takemiya A.Utsunomiya M.Hartwig JF. Org. Lett. 2006, 8: 4179 - 15
Bolzoni L.Casiraghi G.Casnati G.Sartori G. Angew. Chem., Int. Ed. Engl. 1978, 17: 684 - 16
Morimoto T.Takaki K. Angew. Chem. Int. Ed. 2006, 45: 2930 - 17
Talyor JG.Whittall N.Hii KK. Chem. Commun. 2005, 5103 - 18
Coulombel Favier I.Dunach E. Chem. Commun. 2005, 2286 - For examples, see:
-
19a
Bienayme H.Ancel J.-E.Meilland P.Simonato J.-P. Tetrahedron Lett. 2000, 41: 3339 -
19b
Qian H.Han X.Widenhoefer RA. J. Am. Chem. Soc. 2004, 126: 9536 -
19c
Oe Y.Ito Y. Chem. Commun. 2004, 1620 -
19d
Yang C.-G.He Ch. J. Am. Chem. Soc. 2005, 127: 6966 -
19e
Gligorich KM.Schultz MJ.Sigman MS. J. Am. Chem. Soc. 2006, 128: 2794 - 20
Talluri SK.Sudalai A. Org. Lett. 2005, 7: 855 - 21
Nguyen R.-V.Yao X.Li Ch.-J. Org. Lett. 2006, 8: 2397 - 22
Youn SW.Eom JI. J. Org. Chem. 2006, 71: 6705 - 25
Ito A.Kishida M.Kurusu Y.Masuyama Y. J. Org. Chem. 2000, 65: 494
References and Notes
2-Methyl-4-(4′-hydroxylphenyl)chroman (8a): A mixture of salicylaldehyde 6a (61 mg, 0.5 mmol), allyl bromide (2a) (120 mg, 1 mmol) and phenol 3a (69 mg, 0.75 mmol) in ionic liquid (10a) derived from BPyCl-SnCl2·2H2O was stirred at ambient temperature for 10 h. ZnCl2 (102 mg, 0.75 mmol) was added, followed by stirring at 70 °C for 5 h. The reaction mixture was extracted with Et2O. The combined Et2O extracts were washed with aqueous HCl (2 M), and then dried over Na2SO4. The solvent was removed under vacuum and the crude product was purified by flash column chromatography on silica gel (EtOAc-PE, 1:30) to afford 8a as a colorless oil (84 mg, 70%); FTIR (film): 3394, 2971, 1649, 1612, 1581, 1514, 1483, 1455, 1232 cm-1; 1H NMR (300 MHz, CDCl3): δ = 7.10-7.30 (m, 6 H), 6.72-7.07 (m, 2 H), 4.12-4.34 (m, 2 H), 1.91-1.26 (m, 2 H), 1.38, 1.48 (2 × d, J = 6.9, 6.2 Hz, 3 H); 13C NMR (75 MHz, CDCl3): δ = 154.9, 153.9 (153.6)*, 138.6, 136.7, 130.5, 129.4, 129.3, 127.2 (127.6), 125.7, 120.0, 116.2 (116.5), 114.8 (115.2), 67.2 (72.2), 41.8 (38.8), 39.7 (37.5), 20.7 (21.1); (* data in parentheses represents diastereomeric peaks); HRMS (EI): m/z calcd for C16H16O2: 240.1150; found: 240.1149.
242,2-Dimethyl-4-(4′-hydroxylphenyl)chroman (9a): A mixture of salicylaldehyde 6a (61 mg, 0.5 mmol), 2-methyl-allyl chloride (2b) (82 mg, 1.0 mmol) and phenol 3e (69 mg, 0.75 mmol) in ionic liquid (10b) derived from BPyI-SnCl2·2H2O was stirred at 40 °C for 24 h. The reaction mixture was extracted with Et2O. The combined Et2O phase was washed with aqueous HCl (2 M), then dried over Na2SO4. The solvent was removed under vacuum and the crude product was purified by flash column chromatography on silica gel (EtOAc-PE, 1:30) to afford 9a as a colorless oil (83 mg, 66%); FTIR (film): 3394, 2925, 1612, 1571, 1514, 1486, 1449, 1368, 1253, 1124 cm-1; 1H NMR (300 MHz CDCl3): δ = 7.01-7.16 (m, 3 H), 6.69-6.88 (m, 5 H), 5.63 (br s, 1 H), 4.01 (dd, J = 7.2, 4.8 Hz, 1 H), 2.08-2.33 (m, 2 H), 1.43 (s, 3 H), 1.36 (s, 3 H); 13C NMR (75 MHz, CDCl3): δ = 154.6, 154.2, 137.1, 129.9, 127.7, 125.0, 119.9, 117.2, 115.5, 74.8, 43.6, 39.1, 30.0, 24.3; HRMS (EI): m/z calcd for C17H18O2: 254.1307; found: 254.1308.