Subscribe to RSS
DOI: 10.1055/s-2007-980354
Magnesium Perchlorate: An Efficient Catalyst for One-Pot Synthesis of Pyrano- and Furanoquinolines
Publication History
Publication Date:
23 May 2007 (online)
![](https://www.thieme-connect.de/media/synlett/200709/lookinside/thumbnails/10.1055-s-2007-980354-1.jpg)
Abstract
The pyranoquinoline moiety is a structural feature of many natural products. By using a reaction of anilines, aldehydes and 3,4-dihydro-2H-pyran or 2,3-dihydrofuran catalyzed by trace amount of magnesium perchlorate at room temperature, various pyrano- and furanoquinoline derivatives were synthesized efficiently. The noteworthy features of the present system are mild conditions, shorter reaction time, and high diastereoselectivity.
Key words
anilines - aldehydes - pyranoquinolines - furanoquinolines - magnesium perchlorate - one-pot
- 1
Anastas P.Williamson T. Green Chemistry, Frontiers in Benign Chemical Synthesis and Procedures Oxford Science Publications; Oxford: 1998. - 2
Wender PA.Handy SL.Wright DL. Chem. Ind. (London) 1997, 765 - 3
Faber K.Stueckler H.Kappe T. J. Heterocycl. Chem. 1984, 21: 1177 - 4
Yamada N.Kadowaki S.Takahashi K.Umezu K. Biochem. Pharmacol. 1992, 44: 1211 - 5
Akhmed Khodzhaeva KhS.Bessonova IA. Dokl. Akad. Nauk. SSSR 1982, 34 ; Chem. Abstr. 1983, 98, 83727q - 6
Nesterova IN.Alekseeva LM.Andreeva LM.Andreeva NI.Golovira SM.Gvanik VG. Khim.-Farm. Zh. 1995, 29: 31 ; Chem. Abstr. 1996, 124, 117128t - 7
Mohamed EA. Chem. Pap. 1994, 48: 261 ; Chem. Abstr. 1995, 123, 9315x - 8
Ramesh M.Mohan PS.Shanmugam P. Tetrahedron 1984, 40: 4041 -
9a
Weinreb SM. Comprehensive Organic Synthesis Vol 5:Trost BM.Fleming I. Pergamon; Oxford: 1991. p.401 -
9b
Boger DL.Weinreb SM. Hetero Diels-Alder Methodology in Organic Synthesis Academic; San Diego: 1987. Chap. 2 and 9. -
10a
Cabral J.Laszlo P.Montaufier MT. Tetrahedron Lett. 1988, 29: 547 -
10b
Weinreb SM. In Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I. Pergamon; Oxford: 1991. p.401-449 -
10c
Babu G.Perumal PT. Tetrahedron Lett. 1998, 39: 3225 -
10d
Yadav JS.Reddy BVS.Srinivas R.Madhuri Ch.Ramlingam T. Synlett 2001, 240 - 11
Ma Y.Qian C.Xie M.Sun J. J. Org. Chem. 1999, 64: 6462 -
12a
Das B.Reddy MR.Reddy VS.Ramu R. Chem. Lett. 2004, 33: 1526 -
12b
Mahesh M.Venkateswar Reddy C.Srinivasa Reddy K.Raju PKV.Narayana Reddy VV. Synth. Commun. 2004, 34: 4089 -
12c
Reddy ChV.Mahesh M.Raju PKV.Babu TR.Reddy VVN. Tetrahedron Lett. 2002, 43: 2657 - 13
More SV.Sastry MNV.Yao C.-F. Synlett 2006, 1399 - 14
Wang Y.-G.Lin X.-F.Cui S.-L. Synlett 2004, 1175 - 15
Spanedda MV.Hoang VD.Crousse B.Delpon DB.Begue J.-P. Tetrahedron Lett. 2003, 44: 217 - 16
Kumar RS.Nagarajan R.Perumal PT. Synthesis 2004, 949 - 17
Srinivas KVNS.Das B. Synlett 2004, 1715 - 18
Maiti G.Kundu P. Tetrahedron Lett. 2006, 47: 5733 -
19a
Kamble VT.Jamode VS.Joshi NS.Biradar AV.Deshmukh RY. Tetrahedron Lett. 2006, 47: 5573 -
19b
Khan AT.Choudhury LH.Ghosh S. J. Mol. Catal. A: Chem. 2006, 255: 230 -
19c
Agnihotri G.Misra AK. Tetrahedron Lett. 2006, 47: 3653 -
19d
Maheswara M.Siddaiah V.Damu GLV.Rao CV. ARKIVOC 2006, (ii): 201 -
19e
Bartoli G.Boeglin J.Bosco M.Locatelli M.Massaccesi M.Melchiorre P.Sambri L. Adv. Synth. Catal. 2005, 347: 33 -
19f
Kamble VT.Bandgar BP.Khobragade CN.Gacche RN. Lett. Org. Chem. 2006, 3: 658 -
19g
Kamble VT.Bandgar BP.Joshi NS.Muley DB. Catal. Commun. 2007, 8: 498 -
19h
Rudrawar S.Besra RC.Chakraborti AK. Synthesis 2006, 2767 -
19i
Khan AT.Pravin T.Choudhury LH. Synthesis 2006, 2497
References and Notes
General Experimental Procedure
A mixture of the aniline (5 mmol), aldehyde (5 mmol), dihydropyran or dihydrofuran (7 mmol), Mg(ClO4)2 (0.25 mmol, 5 mol%) in MeCN (2 mL) was stirred at r.t. for an appropriate time (Table
[1]
). After completion of the reaction, as indicated by TLC, the reaction mixture was diluted with EtOAc (2 × 10 mL) and washed with H2O (2 × 10 mL) followed by brine (2 × 15 mL). The combined organic extracts were dried over Na2SO4, concentrated in vacuo and purified by column chromatography on silica gel (Merck, 100-200 mesh; EtOAc-hexane, 1:9) to afford the pure pyrano- or furanoquinoline.
Spectral data of selected compounds:
Compound 4j: IR (KBr): 3325 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.35 (m, 1 H), 1.50 (m, 1 H), 1.65 (m, 1 H), 1.85 (m, 1 H), 2.15 (m, 1 H), 3.75 (m, 1 H), 3.90 (br s, 1 H), 4.15 (m, 1 H), 4.40 (d, J = 2.8 Hz, 1 H), 4.70 (d, J = 10.5 Hz, 1 H), 6.70 (t, J = 8.0 Hz, 1 H), 7.05 (dd, J = 8.0, 0.8 Hz, 1 H), 7.15 (dd, J = 8.0, 1.5 Hz, 1 H), 7.30-7.35 (m, 1 H), 7.40-7.45 (m, 2 H), 7.50-7.55 (m, 2 H). MS: m/z = 311 [M+ + 1]. Anal. Calcd for C18H18N2O3: C, 69.66; H, 5.84; N, 9.02. Found: C, 69.64; H, 5.83; N, 9.01.
Compound 5j: IR (KBr): 3375 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.40-1.60 (m, 4 H), 2.10 (m, 1 H), 3.41 (m, 1 H), 3.55-3.70 (m, 2 H), 4.65 (d, J = 2.5 Hz, 1 H), 5.25 (d, J = 5.2 Hz, 1 H), 6.70 (t, J = 7.8 Hz, 1 H), 7.05 (dd, J = 7.8, 0.8 Hz, 1 H), 7.35-7.45 (m, 6 H). MS: m/z = 311 [M+ + 1].
Compound 4m: IR (KBr): 3315 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.72 (m, 1 H), 2.00 (m, 1 H), 2.45 (m, 1 H), 3.42-3.85 (m, 3 H), 4.08 (m, 1 H), 4.58 (d, J = 5.0 Hz, 1 H), 6.42 (d, J = 8.0 Hz, 1 H), 6.64 (d, J = 8.0 Hz, 1 H), 7.05 (t, J = 8.0 Hz, 1 H), 7.14 (d, J = 8.0 Hz, 1 H), 7.35 (s, 4 H). MS: m/z = 297 [M+ + 1]. Anal. Calcd for C17H16N2O3: C, 68.90; H, 5.44; N, 9.45. Found: C, 69.84; H, 5.48; N, 9.44.
Compound 5m: IR (KBr): 3365 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.50-1.62 (m, 2 H), 2.18 (m, 1 H), 3.40-3.62 (m, 2 H), 3.78 (br s, 1 H), 4.65 (d, J = 3.0 Hz, 1 H), 5.25 (d, J = 8.0 Hz, 1 H), 6.53 (t, J = 8.0 Hz, 1 H), 6.68 (t, J = 8.0 Hz, 1 H), 7.05 (t, J = 8.0 Hz, 1 H), 7.36 (s, 4 H), 7.40 (d, J = 8.0 Hz, 1 H). MS: m/z = 297 [M+ + 1].
Compound 4o: IR (KBr): 3320 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.65 (m, 1 H), 2.05 (m, 1 H), 2.35 (s, 3 H), 2.45 (m, 1 H), 3.80 (m, 2 H), 4.05 (m, 2 H), 4.60 (d, J = 5.0 Hz, 1 H), 6.72 (t, J = 7.8 Hz, 1 H), 6.95 (d, J = 7.8 Hz, 1 H), 7.22-7.45 (m, 6 H); MS: m/z = 266 [M+ + 1]. Anal. Calcd for C18H19NO: C, 81.47; H, 7.21; N, 5.27. Found: C, 81.45; H, 7.24; N, 5.26.
Compound 5o: IR (KBr) 3370 cm-1; 1H NMR (200 MHz, CDCl3): δ = 1.50 (m, 1 H), 2.20 (m, 1 H), 2.40 (s, 3 H), 2.75 (m, 1 H), 3.60 (br s, 1 H), 3.70 (m, 1 H), 3.80 (m, 1 H), 4.65 (d, J = 2.6 Hz, 1 H), 5.25 (d, J = 8.0 Hz, 1 H), 6.70 (d, J = 8.1 Hz, 1 H), 7.00 (t, J = 8.0 Hz, 1 H), 7.25 (t, J = 8.0 Hz, 1 H), 7.35-7.50 (m, 5 H). MS: m/z = 266 [M+ + 1].
Compound 4s: IR (KBr): 3340 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.65 (m, 1 H), 1.92 (m, 1 H), 2.43 (m, 1 H), 3.82 (m, 2 H), 4.02 (m, 2 H), 4.55 (d, J = 4.9 Hz, 1 H), 6.72 (t, J = 7.5 Hz, 1 H), 6.99 (t, J = 7.5 Hz, 1 H), 7.26-7.46 (m, 6 H). MS: m/z = 297 [M+ + 1].
Compound 5s: IR (KBr): 3385 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.46 (m, 1 H), 2.20 (m, 1 H), 2.79 (m, 1 H), 3.66-3.80 (m, 3 H), 4.70 (d, J = 3.0 Hz, 1 H), 5.32 (d, J = 8.0 Hz, 1 H), 6.77 (t, J = 7.5 Hz, 1 H), 6.99 (d, J = 6.6 Hz, 1 H), 7.25 (d, J = 6.6 Hz, 1 H), 7.33-7.51 (m, 5 H). MS: m/z = 297 [M+ + 1].