Synlett 2007(10): 1490-1500  
DOI: 10.1055/s-2007-980376
ACCOUNT
© Georg Thieme Verlag Stuttgart · New York

Design versus Discovery in Synthetic Applications of Organoalanes

Simon Woodward*
School of Chemistry, The University of Nottingham, Nottingham NG7 2RD, UK
Fax: +44(115)9513564; e-Mail: simon.woodward@nottingham.ac.uk;
Further Information

Publication History

Received 4 January 2006
Publication Date:
06 June 2007 (online)

Abstract

A discussion focusing on the benefits of considered forethought in proposing new asymmetric catalytic reactions is presented based on the author’s experiences in the areas of copper-promoted 1,4-addition and SN2′ chemistry and in the area of group 10 catalysed coupling reactions of organoaluminium reagents with aldehydes and allylic halides. While high-throughput methods have become the norm for attaining practical procedures in catalytic asymmetric chemistry appropriate strategic planning should not be abandoned in the conception of new catalytic processes.

  • 1 Introduction

  • 2 Design and Discovery in Copper-Based Catalysis

  • 2.1 Serendipity with Thio-Analogues of BINOL

  • 2.2 Design to the Fore in Conjugate Addition

  • 2.3 SN2′ Chemistry: You Can’t Always Get What You Want…

  • 3 Design and Discovery in DABAL-Based Catalysis

  • 3.1 Intelligent Approaches to Asymmetric 1,2-Aldehyde ­Methylation

  • 3.2 Scope of the DABAL-Me3 Reagent

  • 3.3 SN2′ Chemistry: You Can Get What You Want…

  • 4 Summary and Outlook

    References and Notes

  • 1 Hoveyda AH. Chem. Commun.  2004,  1779 
  • 2 Kabbara J. Flemming S. Nickisch K. Neh H. Westermann J. Tetrahedron  1995,  51:  743 
  • 3a Pearson RG. J. Am. Chem. Soc.  1963,  85:  3533 
  • 3b Pearson RG. Struct. Bonding  1993,  80:  1 
  • 4 Green J. Woodward S. Synlett  1995,  155 
  • 5 Woodward S. Tetrahedron  2002,  58:  1017 
  • 6 Bennett SMW. Brown SM. Conole G. Dennis MR. Fraser PK. Radojevic S. McPartlin M. Topping CM. Woodward S. J. Chem. Soc., Perkin Trans. 1  1999,  3127 
  • 7 Bennett SMW. Brown SM. Muxworthy JP. Woodward S. Tetrahedron Lett.  1999,  40:  1767 
  • 8 Kodama H. Okazaki A. Segi A. Shimotsuji A. Ohta T. Furukawa I. Sci. Eng. Rev. Doshisha Univ.  2000,  41:  102 ; Chem. Abstr. 2000, 133, 237651
  • 9a Zhang W. Shi M. Synlett  2007,  19 
  • 9b Shi M. Wang C.-J. Zhang W. Chem. Eur. J.  2004,  10:  5507 
  • 10 Bennett SMW. Brown SM. Cunningham A. Dennis MR. Muxworthy JP. Oakley MA. Woodward S. Tetrahedron  2000,  56:  2847 
  • 11 Woodward S. Chem. Soc. Rev.  2000,  29:  393 
  • 14 House HO. Chu C.-Y. Wilkins JM. Umen MJ. J. Org. Chem.  1975,  40:  1460 
  • 15 Fraser PK. Woodward S. Chem. Eur. J.  2003,  9:  776 
  • 16 Mizutani H. Degrado SJ. Hoveyda AH. J. Am. Chem. Soc.  2002,  124:  779 
  • 17 Review: Kagan HB. Girard C. Guillaneux D. Rainford D. Samuel O. Zhang SY. Zhao SH. Acta Chem. Scand.  1996,  50:  345 ; and references therein
  • 20a Jeffery EA. Meisters A. Mole T. J. Organomet. Chem.  1974,  74:  365 
  • 20b Bagnell L. Jeffery EA. Meisters A. Mole T. Aust. J. Chem.  1975,  28:  801 
  • 21 Albrow V. Biswas K. Crane A. Chaplin N. Easun T. Gladiali S. Lygo B. Woodward S. Tetrahedron: Asymmetry  2003,  14:  2813 
  • 22 For CuTC = Copper(I) thiophene-2-carboxylate, see: Allred GD. Liebeskind LS. J. Am. Chem. Soc.  1996,  118:  2748 
  • 23 Feringa BL. Acc. Chem. Res.  2000,  33:  346 
  • 24 Alexakis A. Rosset S. Allamand J. March S. Guillen F. Benhain C. Synlett  2001,  1375 
  • 25 Alexakis A. Albrow V. Biswas K. d’Augustin M. Prieto O. Woodward S. Chem. Commun.  2005,  2843 
  • 26 Albrow VE. Blake AJ. Fryatt R. Wilson C. Woodward S. Eur. J. Org. Chem.  2006,  2549 
  • 27 Riant O. Argouarch G. Guillaneux D. Samuel O. Kagan HB. J. Org. Chem.  1998,  63:  3511 ; and references within
  • 28a Jensen JF. Johannsen M. Org. Lett.  2003,  5:  3025 
  • 28b Cotton HK. Huerta FF. Bäckvall J.-E. Eur. J. Org. Chem.  2003,  2756 ; and references therein
  • 29 Luetkens ML. Sattelberger AP. Murray HH. Basil JD. Fackler JP. Inorg. Synth.  1990,  28:  305 
  • 30a Kumar PGA. Dotta P. Hermatschweiler R. Pregosin PS. Albinati A. Rizzato S. Organometallics  2005,  24:  1306 ; and references within
  • 30b Hölscher M. Franciò G. Leitner W. Organometallics  2004,  23:  5606 
  • 30c Huber D. Mezzetti A. Tetrahedron: Asymmetry  2004,  15:  2193 
  • 31 Jagger M. Richards K. In Let it Bleed   Decca-ABKCO; UK: 1969. 
  • Reviews:
  • 32a Kaminsky W. J. Polym. Sci., Part A: Polym. Chem.  2004,  42:  3911 
  • 32b Brintzinger HH. Fischer D. Muelhaupt R. Rieger B. Waymouth RM. Angew. Chem., Int. Ed. Engl.  1995,  34:  1143 
  • 33a Zurek E. Ziegler T. Prog. Polym. Sci.  2004,  29:  107 
  • 33b Bryant PL. Harwell CR. Mrse AA. Emery EF. Gan Z. Caldwell T. Reyes AP. Kuhns P. Hoyt DW. Simeral LS. Hall RW. Butler LG. J. Am. Chem. Soc.  2001,  123:  12009 
  • 33c Hanawa H. Abe N. Marouka K. Tetrahedron Lett.  1999,  40:  5365 
  • 34a Yousef RI. Walfort B. Ruffer T. Wagner C. Schmidt H. Herzog R. Steinborn D. J. Organomet. Chem.  2005,  690:  1178 
  • 34b Tammiku-Taul J. Burk P. Tuulmets A. J. Phys. Chem. A  2005,  108:  133 
  • 34c Allen PEM. Hagiass S. Mair C. Williams EH. Ber. Bunsen-Ges. Phys. Chem.  1984,  88:  623 
  • 35 Börner C. Gimeno J. Gladiali S. Goldsmith PJ. Ramazzotti D. Woodward S. Chem. Commun.  2000,  2433 
  • 36a Bäckvall J.-E. Sellén M. J. Chem. Soc., Chem. Commun.  1987,  827 
  • 36b Bäckvall J.-E. Sellén M. Grant B. J. Am. Chem. Soc.  1990,  112:  6615 
  • 36c Persson ESM. Bäckvall J.-E. Acta Chem. Scand.  1995,  49:  899 
  • 36d Karlström ASE. Bäckvall J.-E. Chem. Eur. J.  2001,  7:  1981 
  • 38 Goldsmith P. Woodward S. Angew. Chem. Int. Ed.  2005,  44:  2235 
  • 39 Evans DF. Fazakerley GV. J. Chem. Soc. A  1971,  182 
  • 40 Blake AJ. Shannon J. Stephens JC. Woodward S. Chem. Eur. J.  2007,  13:  2462 
  • 41 Foster DF. Cole-Hamilton DJ. Inorg. Synth.  1997,  31:  29 
  • 42 CSD structure reference codes: Me3Al·NMe3 (DOCQOB); (Me3Al)2·DABCO (JOMBOC); (Me3Al)2·TMEDA (JUBHAP); Me3Al·(quinuclidine) (TMQUAL). See also: Schumann H. Wassermann BC. Schutte S. Heymer B. Nickel S. Seuß TD. Wernik S. Demtshuk J. Girgsdies F. Wiemann R. Z. Anorg. Allg. Chem.  2000,  626:  2081 ; and references therein
  • 43 Bradford AM. Bradley DC. Hursthouse MB. Motevalli M. Organometallics  1992,  11:  111 
  • 44a Pagenkopf BL. Carreira EM. Tetrahedron Lett.  1998,  39:  9593 
  • 44b You JS. Hsieh SH. Gau H.-M. Chem. Commun.  2001,  1546 
  • 45 Ichiyanagi T. Kuniyama S. Shimizu M. Fujisawa T. Chem. Lett.  1998,  1033 
  • 46a Biswas K. Prieto O. Goldsmith P. Woodward S. Angew. Chem. Int. Ed.  2005,  44:  2232 
  • 46b Mata Y. Diéguez M. Pàmies O. Woodward S. J. Org. Chem.  2006,  71:  8159 
  • 48 Biswas K. Chapron A. Cooper T. Fraser PK. Novak A. Prieto O. Woodward S. Pure Appl. Chem.  2006,  78:  511 
  • 49 Cooper T. Novak A. Humphreys LD. Walker MD. Woodward S. Adv. Synth. Catal.  2006,  348:  691 
  • 50 Novak A. Humphreys LD. Walker MD. Woodward S. Tetrahedron Lett.  2006,  47:  5767 
  • Reviews of Pd-catalysed allylation:
  • 52a Trost BM. Van Vranken DL. Chem. Rev.  1996,  96:  395 
  • 52b Braun M. Meier T. Synlett  2006,  661 
  • 53a Kurosawa H. Ohnishi H. Emoto M. Chatani N. Kawasaki Y. Murai S. Ikeda I. Organometallics  1990,  9:  3038 
  • 53b Wada M. Wakabayashi T. J. Organomet. Chem.  1975,  96:  301 
  • 53c Nobuyoshi N. RajanBabu TV. Tetrahedron. Lett.  1997,  38:  1713 
  • 54 Novak A. Fryatt R. Woodward S. C. R. Chim.  2007,  10:  206 
  • 56 Clarke AC. Profiles of the Future   Pan; London: 1964.  Chap. 2. p.30-39  
12

Calculations were carried out using Spartan (www.wavefun.com) for Mac ‘02 to generate equilibrium geometries at using the semi-empirical PM3; Chapron, A. unpublished results.

13

The CSD database was accessed via: www.ccdc.cam.ac.uk.

18

The transition states G/H are conjectures; they could not be attained by PM3 calculation.

19

The enolates were prepared by the chemistry of ref. 15. Neat Ac2O (2.5 equiv) was added and the temperature raised from -45 to +6 °C over 6 h. ( Z )-(3 S )-1,3-Dimethyloct-1-enyl Acetate 1H NMR (400.1 MHz, CDCl3): δ = 0.87 (3 H, t, J = 7.2 Hz, CH2 Me), 0.91 (3 H, d, J = 6.7 Hz, CHMe), 1.19-1.39 [8 H, m, -(CH2)4-], 1.87 (3 H, d, J = 0.9 Hz, =CMe), 2.17 (3 H, s, COMe), 2.34 (1 H, m, CHMe), 4.77 (1 H, dd, J = 9.8, 0.9 Hz, =CH). Irradiation of the olefinic =CH signal (δ = 4.77 ppm) produced a 3.6% NOE at the enol methyl (δ = 1.87 ppm) consistent with a Z double-bond geometry. 13C NMR (100.6 MHz, CDCl3): δ = 15.5 (Me), 19.5 (Me), 21.1 (Me), 22.7 (CH2), 27.0 (CH2), 30.6 (CH), 32.0 (CH2), 37.2 (CH2), 123.4 (=CH), 143.8 (=COAc), 169.1 (C=O). IR (CHCl3): νmax = 1741 (C=O) cm-1. HRMS (EI): m/z calcd for C12H22O2 [M]: 198.1620; found [M+]: 198.1620.
( E )-(3 S )-1,3-Dimethyloct-1-enyl Acetate
1H NMR (400.1 MHz, CDCl3): δ = 0.88 (3 H, t, J = 7.2 Hz, CH2 Me), 0.98 (3 H, d, J = 6.7 Hz, CHMe), 1.19-1.39 [8 H, m, -(CH2)4-], 1.84 (3 H, d, J = 0.9, =CMe), 2.09 (3 H, s, COMe), 2.34 (1 H, m, CHMe), 4.88 (1 H, dd, J = 10.1, 0.9 Hz, =CH). Irradiation of the olefinic =CH signal (δ = 4.88 ppm) produced only a 1.7% NOE at the C(3) methyl (δ = 0.91 ppm) consistent with an E double-bond geometry. 13C NMR (100.6 MHz, CDCl3): δ = 14.1 (Me), 20.7 (Me), 21.3 (Me), 22.7 (CH2), 27.1 (CH2), 31.9 (CH), 32.0 (CH2), 37.7 (CH2), 123.9 (=CH), 144.4 (=COAc), 169.6 (C=O). IR (CHCl3): νmax = 1741 (C=O) cm-1. HRMS (EI): m/z calcd for C12H22O2 [M]: 198.1620; found [M+]: 198.1602.

37

I am indebted to Prof. D. Gillheany (UCD, Ireland) for this advice; he assures me it arose in the K. B. Sharpless group in the 1990s. It’s not always true, but is commonly observed.

47

My sincere thanks to both Charles Davis (of Sigma-Aldrich) and John Blacker (at NPILPharma) for their advice and insights into the world of commercial chemistry. DABAL is now available from Sigma-Aldrich (catalogue no. 68210-1 DABAL-trimethylaluminium).

51

El Hajjaji, S.; Woodward, S. unpublished results.

55

Novak, A.; Woodward, S. unpublished results.