Subscribe to RSS
DOI: 10.1055/s-2007-982563
The Catalytic Asymmetric Claisen Rearrangement (CAC) in Natural Product Synthesis: Synthetic Studies Toward (-)-Ecklonialactone B
Publication History
Publication Date:
25 June 2007 (online)
Abstract
A catalytic asymmetric Claisen rearrangement (CAC) in concert with a ring-closing metathesis (RCM) has been utilized in the enantioselective synthesis of the C10-C18 segment of ecklonialactone B.
Key words
total synthesis - natural products - asymmetric catalysis - pericyclic reactions - Lewis acids
- 1
Kurata K.Taniguchi K.Shiraishi K.Hayama N.Tanaka I.Suzuki M. Chem. Lett. 1989, 267 - 2
Todd JS.Proteau PJ.Gerwick WH. J. Nat. Prod. 1994. 57: p.171 - 3 For a review on oxylipins, see:
Gerwick WH. Chem. Rev. 1993, 93: 1807 - 4
Kurata K.Taniguchi K.Shiraishi K.Suzuki M. Phytochemistry 1993, 33: 155 - 5 Ecklonialactones have also been isolated from the brown alga Eisenia bicyclis, see:
Kousaka K.Ogi N.Akazawa Y.Fujieda M.Yamamoto Y.Takada Y.Kimura J. J. Nat. Prod. 2003, 66: 1318 -
6a
Abraham L.Czerwonka R.Hiersemann M. Angew. Chem. Int. Ed. 2001, 40: 4700 -
6b
Abraham L.Körner M.Schwab P.Hiersemann M. Adv. Synth. Catal. 2004, 346: 1281 -
6c
Abraham L.Körner M.Hiersemann M. Tetrahedron Lett. 2004, 45: 3647 -
7a
Pollex A.Hiersemann M. Org. Lett. 2005, 7: 5705 -
7b
Körner M.Hiersemann M. Synlett 2006, 121 -
8a
Haraguchi K.Tanaka H.Hayakawa H.Miyasaka T. Chem. Lett. 1988, 17: 931 -
8b
Haraguchi K.Tanaka H.Miyasaka T. Synthesis 1989, 434 ; in our experiments, it was beneficial to replace the originally used solvent 1,4-dioxane by THF - 9
Parikh JR.Doering WvE. J. Am. Chem. Soc. 1967, 89: 5505 -
10a
Horner L.Hoffmann H.Wippel HG.Klahre G. Chem. Ber. 1959, 92: 2499 -
10b
Wadsworth WS.Emmons WD. J. Am. Chem. Soc. 1961, 83: 1733 -
10c
Paquet F.Sinay P. J. Am. Chem. Soc. 1984, 106: 8313 -
10d
Paquet F.Sinay P. Tetrahedron Lett. 1984, 25: 3071 -
10e
Pawlak JL.Berchtold GA. J. Org. Chem. 1987, 52: 1765 -
10f
Lesuisse D.Berchtold GA. J. Org. Chem. 1988, 53: 4992 -
11a
Jones DN.Mundy D.Whitehouse RD. J. Chem. Soc. D 1970, 86 -
11b
Sharpless KB.Young MW.Lauer RF. Tetrahedron Lett. 1973, 14: 1979 -
11c
Reich HJ.Reich IL.Renga JM. J. Am. Chem. Soc. 1973, 95: 5813 - 12 Preparative HPLC: Nu 50-7, 32 × 250 mm, heptane-EtOAc (95:5), 20 mL/min, t
R (E,Z)-5 = 25 min, t
R (Z,Z)-5 = 22 min, baseline separation with 100 mg/injection
- 13 Though the synthesis of 3-butenal has been reported in the literature, the isomerization to crotonic aldehyde could not be prevented. For the preparation of 3-butenal, see:
Crimmins MT.Choy AL. J. Am. Chem. Soc. 1999, 121: 5653 - 14
Evans DA.Burgey CS.Paras NA.Vojkovsky T.Tregay SW. J. Am. Chem. Soc. 1998, 120: 5824 - 16
Mengel A.Reiser O. Chem. Rev. 1999, 99: 1191 -
17a
Oikawa Y.Yoshioka T.Yonemitsu O. Tetrahedron Lett. 1982, 23: 885 -
17b
Horita K.Yoshioka T.Tanaka T.Oikawa Y.Yonemitsu O. Tetrahedron 1986, 42: 3021 - 18
Scholl M.Ding S.Lee CW.Grubbs RH. Org. Lett. 1999, 1: 953 - 20
Hicks DR.Fraser-Reid B. Synthesis 1974, 203 -
21a
Huynh C.Derguini-Boumechal F.Linstrumelle G. Tetrahedron Lett. 1979, 20: 1503 -
21b
Cink RD.Forsyth CJ. J. Org. Chem. 1995, 60: 8122 - The stereochemical result of the epoxidation may be explained by assuming a favorable hydroxyl directed (12Si,13Si)-attack of the peracid, see:
-
23a
Hoveyda AH.Evans DA.Fu GC. Chem. Rev. 1993, 93: 1307 ; and literature cited therein - Alternatively and or additionally, the (12Si,13Si)-approach of the peracid from the face opposite to the benzyloxymethyl group on C11 should be favorable. For recent peracid epoxidations of highly substituted cyclopentenoids in the context of the total synthesis of oxylipins, see for example:
-
23b
Ghosh S.Sinha S.Drew MGB. Org. Lett. 2006, 8: 3781 -
23c
Miyaoka H.Hara Y.Shinohara I.Kurokawa T.Yamada Y. Tetrahedron Lett. 2005, 46: 7945
References and Notes
Synthesis of (3
R
,4
R
)-4
A stock solution of {Cu[(S,S)-tert-Bu-box]}(H2O)2(SbF6)2 (10) in CF3CH2OH (1 mL, 0.1 M, 86 mg, 0.1 mmol, 0.05 equiv) was dissolved in CH2Cl2 (5 mL). The allyl vinyl ether (E,Z)-5 (0.59 g, 2.0 mmol, 1 equiv) was then added and the solution was stirred over night at r.t. At this point, additional {Cu[(S,S)-tert-Bu-box]}(H2O)2(SbF6)2 (0.5 mL, 0.1 M in CF3CH2OH, 43 mg, 0.05 mmol, 0.025 equiv) was added. The reaction mixture was stirred for 3 d at r.t. and then concentrated under reduced pressure. The catalyst was removed by filtering the crude product mixture through a short path silica gel column. Subsequent flash chromatography (hexane-EtOAc, 50:1) afforded the α-keto ester 4 (0.54 g, 1.8 mmol, 92%) as a light yellow oil. TLC: R
f
= 0.72 (hexane-EtOAc, 5:1). 1H NMR (400 MHz, CDCl3): δ = 2.32-2.36 (m, 2 H), 2.83 (ddd, J
1 = 19.1 Hz, J
2 = 9.5 Hz, J
3 = 4.8 Hz, 1 H), 3.32 (dd, J
1 = J
2 = 9.7 Hz, 1 H), 3.39-3.47 (m, 2 H), 3.54 (s, 3 H), 4.27 (d, J = 12.1 Hz, 1 H), 4.31 (d, J = 12.1 Hz, 1 H), 4.90-4.97 (m, 2 H), 5.13-5.17 (m, 2 H), 5.52 (ddd, J
1 = 17.4 Hz, J
2 = J
3 = 9.5 Hz, 1 H), 5.64 (dddd, J
1 = 17.1 Hz, J
2 = 10.0 Hz, J
3 = 7.1, J
4 = 7.0 Hz, 1 H), 7.19-7.31 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 34.7 (CH2), 48.2 (CH), 48.2 (CH), 52.4 (CH3), 72.5 (CH2), 72.6 (CH2), 117.2 (CH2), 118.9 (CH2), 127.5 (3 × CH), 128.2 (2 × CH), 134.7 (CH), 135.4 (CH), 137.3 (C), 161.2 (C), 194.7 (C). IR (in substance): 3080-2860, 1730, 1640 cm-1. Anal. Calcd for C18H22O4: C, 71.5; H, 7.3. Found: C, 71.5; H, 7.1. [α]D
25 +46.8 (c 0.68, CHCl3).
Synthesis of 3
Diene 11 (36.4 mg, 0.12 mmol, 1 equiv) was dissolved in DCE (2.5 mL) in a septum-sealed round-bottomed flask. The flask was twice evacuated (20 mbar, 2 min) and ventilated with argon. The Grubbs catalyst 12 (1.0 mg, 1.2 µmol, 0.01 equiv) was then added to the solution and the flask was again twice evacuated and ventilated with argon. The reaction mixture was then stirred for 5 h at 40 °C. Silica gel (120 mg) was subsequently added and the heterogeneous mixture was stirred for several minutes. The solid was then removed by filtration and the solvents were evaporated at reduced pressure. The crude product was purified by flash chromatography (hexane-EtOAc, 20:1 to 10:1) to afford the cyclopentenoid 3 (27.6 mg, 0.10 mmol, 84%) as a light yellow oil. TLC: R
f
= 0.17 (hexane-EtOAc, 5:1). 1H NMR (400 MHz, CDCl3): δ = 2.32 (ddd, J
1 = 15.9 Hz, J
2 = 6.0 Hz, J
3 = 2.1 Hz, 1 H), 2.41 (ddd, J
1 = 15.1 Hz, J
2 = J
3 = 6.3 Hz, 1 H), 2.51 (ddd, J
1 = 15.8 Hz, J
2 = J
3 = 2.3 Hz, 1 H), 2.96-2.98 (m, 1 H), 3.20 (dd, J
1 = J
2 = 8.7 Hz, 1 H), 3.51 (dd, J
1 = 8.8 Hz, J
2 = 5.0 Hz, 1 H), 3.66 (s, 3 H), 4.10 (d, J = 6.8 Hz, 1 H), 4.50 (d, J = 12.2 Hz, 2 H), 4.55 (d, J = 12.2 Hz, 1 H), 5.50 (ddd, J
1 = 3.8 Hz, J
2 = J
3 = 1.9 Hz, 1 H), 5.70 (dd, J
1 = 5.5 Hz, J
2 = 2.3 Hz, 1 H), 7.25-7.35 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 35.7 (CH2), 45.9 (CH), 48.8 (CH), 52.0 (CH3), 73.2 (CH2), 73.5 (CH2), 74.0 (CH), 127.7 (3 × CH), 128.4 (2 × CH), 130.1 (CH), 130.9 (CH), 137.6 (C), 174.4 (C). IR (in substance): 3445, 3060-2855, 1738 cm-1. Anal. Calcd for C16H20O4: C, 69.5; H, 7.3. Found: C, 69.3; H, 7.6. [α]D
25 -58.9 (c 0.56, CHCl3).
Synthesis of 2
To a solution of the olefin 17 (79.6 mg, 0.32 mmol, 1 equiv) in CH2Cl2 (12 mL) was added Na2HPO4 (137.7 mg, 0.97 mmol, 3 equiv) and MCPBA (77% purity, 108.7 mg, 0.49 mmol, 1.5 equiv) at 0 °C. The reaction mixture was then stirred for 7 h at r.t. and subsequently quenched with sat. aq Na2SO3 solution. The layers were separated and the aq phase was extracted three times with CH2Cl2. The combined organic phases were dried with MgSO4 and concentrated under reduced pressure. Flash chromatography (hexane-EtOAc, 20:1 to 10:1) afforded the epoxide 2 (56 mg, 0.21 mmol, 66%) and its diastereomer 18 (22 mg, 0.08 mmol, 26%). TLC (hexane-EtOAc, 2:1): R
f
(18) = 0.41, R
f
(2) = 0.31.
Compound 2: 1H NMR (400 MHz, CDCl3): δ = 0.92 (dd, J
1 = J
2 = 7.4 Hz, 3 H), 1.26 (ddq, J
1 = 14.2, J
2 = 7.3 Hz, J
3 = 7.1 Hz, 1 H), 1.41 (ddd, J
1 = 13.9 Hz, J
2 = 9.1 Hz, J
3 = 0.7 Hz, 1 H), 1.47-1.59 (m, 2 H), 2.12-2.19 (m, 2 H), 3.26 (ddd, J
1 = 8.5 Hz, J
2 = 8.3 Hz, J
3 = 1.9 Hz, 1 H), 3.40-3.41 (m, 2 H), 3.53 (dd, J
1 = 9.3 Hz, J
2 = 9.1 Hz, 1 H), 3.81 (dd, J
1 = 9.1 Hz, J
2 = 4.5 Hz, 1 H), 4.15 (OH, 1 H), 4.54 (d, J = 12.1 Hz, 1 H), 4.62 (d, J = 12.1 Hz, 1 H), 7.26-7.29 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 9.2 (CH3), 28.0 (CH2), 32.4 (CH2), 44.7 (CH), 45.6 (CH), 55.6 (CH), 59.1 (CH), 71.5 (CH2), 73.5 (CH2), 75.8 (CH), 127.8 (3 × CH), 128.4 (2 × CH), 137.0 (C). IR (in substance): 3430, 3090-2875, 1715 cm-1. Anal. Calcd for C16H22O2: C, 73.3; H, 8.5. Found: C, 72.9; H, 8.6. [α]D
25 -55.1 (c 0.55, CHCl3).