References and Notes
1
Hiari YM.
Khanfar MA.
Qaisi AM.
Abu Shuheil MY.
El-Abadelah MM.
Boese R.
Heterocycles
2006,
68:
1163
2
Mann J.
Crabbe MJC.
Bacteria and Antibacterial Agents
Biochemical & Medicinal Chemistry Series, Oxford University Press;
USA:
1996.
p.64
3
Heindel ND.
Brodof TA.
Kogelschatz JE.
J. Heterocycl. Chem.
1966,
3:
222
4a
Lauer WM.
Kaslow CE.
Org. Synth., Coll. Vol. III
Wiley and Sons;
New York:
1955.
p.580
4b
Reynolds GA.
Hauser CR.
Org. Synth., Coll. Vol. III
Wiley and Sons;
New York:
1955.
p.593
5
Price CC.
Roberts RM.
Org. Synth., Coll. Vol. III
Wiley and Sons;
New York:
1955.
p.272
6
Chen B.
Huang X.
Wang J.
Synthesis
1987,
482
7
Joule JA.
Mills K.
Heterocyclic Chemistry
4th ed.:
Blackwell Publishers;
London:
2000.
p.133
8
Al-Awadi H.
Ibrahim MR.
Dib HH.
Al-Awadi NA.
Ibrahim AI.
Tetrahedron
2005,
61:
10507
9
Al-Awadi NA.
George BJ.
Dib HH.
Ibrahim MR.
Ibrahim YA.
El-Dusouqui OM.
Tetrahedron
2005,
61:
8257
10
Al-Awadi NA.
Elnagdi MH.
Ibrahim YA.
Kaul K.
Kumar A.
Tetrahedron
2001,
57:
1609
11
Hickson CL.
Keith EM.
Martin JC.
McNab H.
Monahan LC.
Walkinshaw MD.
J. Chem. Soc., Perkin Trans. 1
1986,
1465
12
Static Pyrolysis of 8-j
The substrate (0.2 g) was introduced in the Pyrex reaction tube (12 cm length and 1.5 cm internal diameter). The tube was sealed under vacuum (0.02 m bar) and placed in the pyrolyzer for 900 s at 300 °C. The content of the tube was then separated by preparative high-performance liquid chromatography (HPLC) and was analyzed by 1H NMR, 13C NMR, IR and GC-MS. Relative and percent yields were determined from NMR.
13
Flash Vacuum Pyrolysis of 8a-j
The sample was volatilized from a tube in a Buchi Kugelrohr oven through a 30 × 2.5 cm horizontal-fused quartz tube and was heated externally by a cabolite Eurotherm tube furnace MTF-12/38A to 600 °C. The products were collected in a U-shaped trap cooled in liquid nitrogen. The whole system was maintained at a pressure of 10-2 Torr by an Edwards Model E2M5 high-capacity rotary oil pump, the pressure being measured by a Pirani gauge situated between the cold trap and pump. Under these condition the contact time in the hot zone was estimated to be 10 ms. Products collected in the U-shaped trap were analyzed by 1H NMR, 13C NMR, IR and GC-MS. Relative and percent yields were determined from NMR.
Compounds 11a,c,d,f-h,j-n, 16, and 17 has been reported earlier and proved to be identical with products obtained here.
[19-27]
14
6-Methyl-1
H
-quinolin-4-one (
11b)
Mp 240-242 °C. IR (KBr): 3050 (NH), 1625 (CO) cm-1. LC-MS: m/z (%) = 159 (100) [M+]. 1H NMR (400 MHz, DMSO): δ = 2.39 (s, 3 H, CH3), 6.0 (d, 1 H, J = 7.2 Hz, quinoline-H3), 7.45 (d, 1 H, quinoline-H8), 7.48 (d, 1 H, quinoline-H7), 7.86 (d, 1 H, J = 7.2 Hz, quinoline-H2), 8.31 (s, 1 H, quinoline-H5), 11.72 (br s, 1 H, D2O exchangeable, NH). 13C NMR (DMSO, 100 MHz): δ = 21.55, 109.09, 119.18, 124.70, 125.96, 134.31, 134.57, 138.67, 140.50, 178.48. DEPT 135: δ = 21.55, 109.09, 119.18, 124.70, 125.96, 134.57, 140.50.
15
7-Bromo-1
H
-quinolin-4-one (
11e)
Mp 242-244 °C. LC-MS: m/z = 225 [M + 1]. 1H NMR (400 MHz, DMSO): δ = 6.04 (d, 1 H, H3, J = 7.37 Hz), 7.52 (d, 1 H, J = 8.56 Hz), 7.74 (s, 1 H, H-5), 7.82 (d, 1 H, J = 7.37 Hz, H2), 8 (d, 1 H, J = 8.56 Hz, H6), 11.22 (br, 1 H, NH). 13C NMR (100 MHz, DMSO): δ = 111.5, 120.4, 123.2, 126, 128.4, 132.7, 141, 143.4, 177.4.
16
5-Bromo-1
H
-quinolin-4-one (
11i)
Mp 234-236 °C. IR (KBr): 1645 (CO) cm-1. LC-MS: m/z = 225 [M + 1]. 1H NMR (400 MHz, DMSO): δ = 6.06 (d, 1 H, H3, J = 7.24 Hz), 7.41-7.47 (m, 3 H, ArH), 7.93 (d, 1 H, J = 7.24 Hz, H-2), 11.18 (br, 1 H, NH). 13C NMR (75 MHz, DMSO): δ = 110.3, 119.5, 121.5, 125.6, 127.2, 130.6, 139.3, 142, 177.
17
Smith MB.
March J.
March’s Advanced Organic Chemistry: Reaction Mechanisms and Structure
5th ed.:
J. Wiley and Sons, Inc.;
New York:
2001.
p.68
18
Pyrazino[1,2-
a
]pyrimidin-4-one (
19)
Mp 178-180 °C. IR (KBr): 1692 (CO) cm-1. LC-MS: m/z = 148 [M + 1]. 1H NMR (400 MHz, DMSO): δ = 6.67 (d, 1 H, J = 6.44 Hz, pyrimidine-H), 8.19 (d, 1 H, J = 4.64 Hz, pyrazine-H), 8.41 (d, 1 H, J = 6.44 Hz, pyrimidine-H), 8.73 (d, 1 H, J = 4.64 Hz, pyrazine-H), 9.13 (s, 1 H, pyrazine-H). 13C NMR (75 MHz, DMSO): δ = 109.6, 118.2, 133.0, 145.8, 154.2, 155.9, 156.8. DEPT 135: δ = 109.6, 118.2, 133.0, 154.2, 155.9. Anal. Calcd for C7H5N3O (147.14): C, 57.14; H, 3.43; N, 28.56. Found: C, 57.53; H, 3.62; N, 28.83.
19
Huang X.
Liu Z.
J. Org. Chem.
2002,
67:
6731
20
Tois J.
Vahermo M.
Koskinen A.
Tetrahedron Lett.
2005,
46:
735
21
Huang X.
Liu Z.
Tetrahedron Lett.
2001,
42:
7655
22
Griera R.
Armengol M.
Reyes A.
Alvarez M.
Palomer A.
Cabre F.
Pascual J.
Garcia ML.
Mauleon D.
Eur. J. Med. Chem.
1997,
547
23
Hirano J.
Hamase K.
Zaitsu K.
Tetrahedron
2006,
62:
10065
24 For 5-OMe: Cassis R.
Tapia R.
Valderrama J.
Synth. Commun.
1995,
15:
125
25
Ruchelman AL.
Kerrigan JE.
Li T.-K.
Zhou N.
Liu A.
Liu LF.
LaVoie EJ.
Bioorg. Med. Chem.
2004,
12:
3731
26
Reimlinger H.
Peiren MA.
Merenyi R.
Chem. Ber.
1972,
105:
794
27
Czuba WC.
Kowalski P.
Grzegozek M.
Pol. J. Chem.
1980,
54:
1573