Synlett 2007(14): 2205-2208  
DOI: 10.1055/s-2007-985573
LETTER
© Georg Thieme Verlag Stuttgart · New York

Gas-Phase Pyrolysis in Organic Synthesis: Rapid Green Synthesis of 4-Quinolinones

Nouria A. Al-Awadi*a, Ismail Abdelshafy Abdelhamida, Ismail Abdelshafy Abdelhamidb, Alya M. Al-Etaibib, Mohamed Hilmy Elngadia
a Chemistry Department, Faculty of Science, Kuwait University, PO Box 5969, Safat 13060, Kuwait
e-Mail: nouria@kuc01.kuniv.edu.kw;
b Natural Science Department, College of Health Sciences, Public Authority for Applied Education and Training, Kuwait
Further Information

Publication History

Received 16 May 2007
Publication Date:
13 August 2007 (online)

Abstract

Gas-phase pyrolysis of aminomethylene Meldrum’s acid derivatives gave quinolinones and/or amines depending on the ­nature of arylamino moiety. Effect of substituent on reaction rate and nature of pyrolysis products supports the suggested intramolecular nucleophilic substitution reaction via initially formed keteneamine intermediate.

    References and Notes

  • 1 Hiari YM. Khanfar MA. Qaisi AM. Abu Shuheil MY. El-Abadelah MM. Boese R. Heterocycles  2006,  68:  1163 
  • 2 Mann J. Crabbe MJC. Bacteria and Antibacterial Agents   Biochemical & Medicinal Chemistry Series, Oxford University Press; USA: 1996.  p.64 
  • 3 Heindel ND. Brodof TA. Kogelschatz JE. J. Heterocycl. Chem.  1966,  3:  222 
  • 4a Lauer WM. Kaslow CE. Org. Synth., Coll. Vol. III   Wiley and Sons; New York: 1955.  p.580 
  • 4b Reynolds GA. Hauser CR. Org. Synth., Coll. Vol. III   Wiley and Sons; New York: 1955.  p.593 
  • 5 Price CC. Roberts RM. Org. Synth., Coll. Vol. III   Wiley and Sons; New York: 1955.  p.272 
  • 6 Chen B. Huang X. Wang J. Synthesis  1987,  482 
  • 7 Joule JA. Mills K. Heterocyclic Chemistry   4th ed.:  Blackwell Publishers; London: 2000.  p.133 
  • 8 Al-Awadi H. Ibrahim MR. Dib HH. Al-Awadi NA. Ibrahim AI. Tetrahedron  2005,  61:  10507 
  • 9 Al-Awadi NA. George BJ. Dib HH. Ibrahim MR. Ibrahim YA. El-Dusouqui OM. Tetrahedron  2005,  61:  8257 
  • 10 Al-Awadi NA. Elnagdi MH. Ibrahim YA. Kaul K. Kumar A. Tetrahedron  2001,  57:  1609 
  • 11 Hickson CL. Keith EM. Martin JC. McNab H. Monahan LC. Walkinshaw MD. J. Chem. Soc., Perkin Trans. 1  1986,  1465 
  • 17 Smith MB. March J. March’s Advanced Organic Chemistry: Reaction Mechanisms and Structure   5th ed.:  J. Wiley and Sons, Inc.; New York: 2001.  p.68 
  • 19 Huang X. Liu Z. J. Org. Chem.  2002,  67:  6731 
  • 20 Tois J. Vahermo M. Koskinen A. Tetrahedron Lett.  2005,  46:  735 
  • 21 Huang X. Liu Z. Tetrahedron Lett.  2001,  42:  7655 
  • 22 Griera R. Armengol M. Reyes A. Alvarez M. Palomer A. Cabre F. Pascual J. Garcia ML. Mauleon D. Eur. J. Med. Chem.  1997,  547 
  • 23 Hirano J. Hamase K. Zaitsu K. Tetrahedron  2006,  62:  10065 
  • 24 For 5-OMe: Cassis R. Tapia R. Valderrama J. Synth. Commun.  1995,  15:  125 
  • 25 Ruchelman AL. Kerrigan JE. Li T.-K. Zhou N. Liu A. Liu LF. LaVoie EJ. Bioorg. Med. Chem.  2004,  12:  3731 
  • 26 Reimlinger H. Peiren MA. Merenyi R. Chem. Ber.  1972,  105:  794 
  • 27 Czuba WC. Kowalski P. Grzegozek M. Pol. J. Chem.  1980,  54:  1573 
12

Static Pyrolysis of 8-j
The substrate (0.2 g) was introduced in the Pyrex reaction tube (12 cm length and 1.5 cm internal diameter). The tube was sealed under vacuum (0.02 m bar) and placed in the pyrolyzer for 900 s at 300 °C. The content of the tube was then separated by preparative high-performance liquid chromatography (HPLC) and was analyzed by 1H NMR, 13C NMR, IR and GC-MS. Relative and percent yields were determined from NMR.

13

Flash Vacuum Pyrolysis of 8a-j The sample was volatilized from a tube in a Buchi Kugelrohr oven through a 30 × 2.5 cm horizontal-fused quartz tube and was heated externally by a cabolite Eurotherm tube furnace MTF-12/38A to 600 °C. The products were collected in a U-shaped trap cooled in liquid nitrogen. The whole system was maintained at a pressure of 10-2 Torr by an Edwards Model E2M5 high-capacity rotary oil pump, the pressure being measured by a Pirani gauge situated between the cold trap and pump. Under these condition the contact time in the hot zone was estimated to be 10 ms. Products collected in the U-shaped trap were analyzed by 1H NMR, 13C NMR, IR and GC-MS. Relative and percent yields were determined from NMR.
Compounds 11a,c,d,f-h,j-n, 16, and 17 has been reported earlier and proved to be identical with products obtained here. [19-27]

14

6-Methyl-1 H -quinolin-4-one ( 11b)
Mp 240-242 °C. IR (KBr): 3050 (NH), 1625 (CO) cm-1. LC-MS: m/z (%) = 159 (100) [M+]. 1H NMR (400 MHz, DMSO): δ = 2.39 (s, 3 H, CH3), 6.0 (d, 1 H, J = 7.2 Hz, quinoline-H3), 7.45 (d, 1 H, quinoline-H8), 7.48 (d, 1 H, quinoline-H7), 7.86 (d, 1 H, J = 7.2 Hz, quinoline-H2), 8.31 (s, 1 H, quinoline-H5), 11.72 (br s, 1 H, D2O exchangeable, NH). 13C NMR (DMSO, 100 MHz): δ = 21.55, 109.09, 119.18, 124.70, 125.96, 134.31, 134.57, 138.67, 140.50, 178.48. DEPT 135: δ = 21.55, 109.09, 119.18, 124.70, 125.96, 134.57, 140.50.

15

7-Bromo-1 H -quinolin-4-one ( 11e)
Mp 242-244 °C. LC-MS: m/z = 225 [M + 1]. 1H NMR (400 MHz, DMSO): δ = 6.04 (d, 1 H, H3, J = 7.37 Hz), 7.52 (d, 1 H, J = 8.56 Hz), 7.74 (s, 1 H, H-5), 7.82 (d, 1 H, J = 7.37 Hz, H2), 8 (d, 1 H, J = 8.56 Hz, H6), 11.22 (br, 1 H, NH). 13C NMR (100 MHz, DMSO): δ = 111.5, 120.4, 123.2, 126, 128.4, 132.7, 141, 143.4, 177.4.

16

5-Bromo-1 H -quinolin-4-one ( 11i)
Mp 234-236 °C. IR (KBr): 1645 (CO) cm-1. LC-MS: m/z = 225 [M + 1]. 1H NMR (400 MHz, DMSO): δ = 6.06 (d, 1 H, H3, J = 7.24 Hz), 7.41-7.47 (m, 3 H, ArH), 7.93 (d, 1 H, J = 7.24 Hz, H-2), 11.18 (br, 1 H, NH). 13C NMR (75 MHz, DMSO): δ = 110.3, 119.5, 121.5, 125.6, 127.2, 130.6, 139.3, 142, 177.

18

Pyrazino[1,2- a ]pyrimidin-4-one ( 19) Mp 178-180 °C. IR (KBr): 1692 (CO) cm-1. LC-MS: m/z = 148 [M + 1]. 1H NMR (400 MHz, DMSO): δ = 6.67 (d, 1 H, J = 6.44 Hz, pyrimidine-H), 8.19 (d, 1 H, J = 4.64 Hz, pyrazine-H), 8.41 (d, 1 H, J = 6.44 Hz, pyrimidine-H), 8.73 (d, 1 H, J = 4.64 Hz, pyrazine-H), 9.13 (s, 1 H, pyrazine-H). 13C NMR (75 MHz, DMSO): δ = 109.6, 118.2, 133.0, 145.8, 154.2, 155.9, 156.8. DEPT 135: δ = 109.6, 118.2, 133.0, 154.2, 155.9. Anal. Calcd for C7H5N3O (147.14): C, 57.14; H, 3.43; N, 28.56. Found: C, 57.53; H, 3.62; N, 28.83.