Subscribe to RSS
DOI: 10.1055/s-2007-985573
Gas-Phase Pyrolysis in Organic Synthesis: Rapid Green Synthesis of 4-Quinolinones
Publication History
Publication Date:
13 August 2007 (online)
Abstract
Gas-phase pyrolysis of aminomethylene Meldrum’s acid derivatives gave quinolinones and/or amines depending on the nature of arylamino moiety. Effect of substituent on reaction rate and nature of pyrolysis products supports the suggested intramolecular nucleophilic substitution reaction via initially formed keteneamine intermediate.
Key words
Meldrum’s acid - pyrolysis - 4-quinolinones
- 1
Hiari YM.Khanfar MA.Qaisi AM.Abu Shuheil MY.El-Abadelah MM.Boese R. Heterocycles 2006, 68: 1163 - 2
Mann J.Crabbe MJC. Bacteria and Antibacterial Agents Biochemical & Medicinal Chemistry Series, Oxford University Press; USA: 1996. p.64 - 3
Heindel ND.Brodof TA.Kogelschatz JE. J. Heterocycl. Chem. 1966, 3: 222 -
4a
Lauer WM.Kaslow CE. Org. Synth., Coll. Vol. III Wiley and Sons; New York: 1955. p.580 -
4b
Reynolds GA.Hauser CR. Org. Synth., Coll. Vol. III Wiley and Sons; New York: 1955. p.593 - 5
Price CC.Roberts RM. Org. Synth., Coll. Vol. III Wiley and Sons; New York: 1955. p.272 - 6
Chen B.Huang X.Wang J. Synthesis 1987, 482 - 7
Joule JA.Mills K. Heterocyclic Chemistry 4th ed.: Blackwell Publishers; London: 2000. p.133 - 8
Al-Awadi H.Ibrahim MR.Dib HH.Al-Awadi NA.Ibrahim AI. Tetrahedron 2005, 61: 10507 - 9
Al-Awadi NA.George BJ.Dib HH.Ibrahim MR.Ibrahim YA.El-Dusouqui OM. Tetrahedron 2005, 61: 8257 - 10
Al-Awadi NA.Elnagdi MH.Ibrahim YA.Kaul K.Kumar A. Tetrahedron 2001, 57: 1609 - 11
Hickson CL.Keith EM.Martin JC.McNab H.Monahan LC.Walkinshaw MD. J. Chem. Soc., Perkin Trans. 1 1986, 1465 - 17
Smith MB.March J. March’s Advanced Organic Chemistry: Reaction Mechanisms and Structure 5th ed.: J. Wiley and Sons, Inc.; New York: 2001. p.68 - 19
Huang X.Liu Z. J. Org. Chem. 2002, 67: 6731 - 20
Tois J.Vahermo M.Koskinen A. Tetrahedron Lett. 2005, 46: 735 - 21
Huang X.Liu Z. Tetrahedron Lett. 2001, 42: 7655 - 22
Griera R.Armengol M.Reyes A.Alvarez M.Palomer A.Cabre F.Pascual J.Garcia ML.Mauleon D. Eur. J. Med. Chem. 1997, 547 - 23
Hirano J.Hamase K.Zaitsu K. Tetrahedron 2006, 62: 10065 - 24 For 5-OMe:
Cassis R.Tapia R.Valderrama J. Synth. Commun. 1995, 15: 125 - 25
Ruchelman AL.Kerrigan JE.Li T.-K.Zhou N.Liu A.Liu LF.LaVoie EJ. Bioorg. Med. Chem. 2004, 12: 3731 - 26
Reimlinger H.Peiren MA.Merenyi R. Chem. Ber. 1972, 105: 794 - 27
Czuba WC.Kowalski P.Grzegozek M. Pol. J. Chem. 1980, 54: 1573
References and Notes
Static Pyrolysis of 8-j
The substrate (0.2 g) was introduced in the Pyrex reaction tube (12 cm length and 1.5 cm internal diameter). The tube was sealed under vacuum (0.02 m bar) and placed in the pyrolyzer for 900 s at 300 °C. The content of the tube was then separated by preparative high-performance liquid chromatography (HPLC) and was analyzed by 1H NMR, 13C NMR, IR and GC-MS. Relative and percent yields were determined from NMR.
Flash Vacuum Pyrolysis of 8a-j
The sample was volatilized from a tube in a Buchi Kugelrohr oven through a 30 × 2.5 cm horizontal-fused quartz tube and was heated externally by a cabolite Eurotherm tube furnace MTF-12/38A to 600 °C. The products were collected in a U-shaped trap cooled in liquid nitrogen. The whole system was maintained at a pressure of 10-2 Torr by an Edwards Model E2M5 high-capacity rotary oil pump, the pressure being measured by a Pirani gauge situated between the cold trap and pump. Under these condition the contact time in the hot zone was estimated to be 10 ms. Products collected in the U-shaped trap were analyzed by 1H NMR, 13C NMR, IR and GC-MS. Relative and percent yields were determined from NMR.
Compounds 11a,c,d,f-h,j-n, 16, and 17 has been reported earlier and proved to be identical with products obtained here.
[19-27]
6-Methyl-1
H
-quinolin-4-one (
11b)
Mp 240-242 °C. IR (KBr): 3050 (NH), 1625 (CO) cm-1. LC-MS: m/z (%) = 159 (100) [M+]. 1H NMR (400 MHz, DMSO): δ = 2.39 (s, 3 H, CH3), 6.0 (d, 1 H, J = 7.2 Hz, quinoline-H3), 7.45 (d, 1 H, quinoline-H8), 7.48 (d, 1 H, quinoline-H7), 7.86 (d, 1 H, J = 7.2 Hz, quinoline-H2), 8.31 (s, 1 H, quinoline-H5), 11.72 (br s, 1 H, D2O exchangeable, NH). 13C NMR (DMSO, 100 MHz): δ = 21.55, 109.09, 119.18, 124.70, 125.96, 134.31, 134.57, 138.67, 140.50, 178.48. DEPT 135: δ = 21.55, 109.09, 119.18, 124.70, 125.96, 134.57, 140.50.
7-Bromo-1
H
-quinolin-4-one (
11e)
Mp 242-244 °C. LC-MS: m/z = 225 [M + 1]. 1H NMR (400 MHz, DMSO): δ = 6.04 (d, 1 H, H3, J = 7.37 Hz), 7.52 (d, 1 H, J = 8.56 Hz), 7.74 (s, 1 H, H-5), 7.82 (d, 1 H, J = 7.37 Hz, H2), 8 (d, 1 H, J = 8.56 Hz, H6), 11.22 (br, 1 H, NH). 13C NMR (100 MHz, DMSO): δ = 111.5, 120.4, 123.2, 126, 128.4, 132.7, 141, 143.4, 177.4.
5-Bromo-1
H
-quinolin-4-one (
11i)
Mp 234-236 °C. IR (KBr): 1645 (CO) cm-1. LC-MS: m/z = 225 [M + 1]. 1H NMR (400 MHz, DMSO): δ = 6.06 (d, 1 H, H3, J = 7.24 Hz), 7.41-7.47 (m, 3 H, ArH), 7.93 (d, 1 H, J = 7.24 Hz, H-2), 11.18 (br, 1 H, NH). 13C NMR (75 MHz, DMSO): δ = 110.3, 119.5, 121.5, 125.6, 127.2, 130.6, 139.3, 142, 177.
Pyrazino[1,2- a ]pyrimidin-4-one ( 19) Mp 178-180 °C. IR (KBr): 1692 (CO) cm-1. LC-MS: m/z = 148 [M + 1]. 1H NMR (400 MHz, DMSO): δ = 6.67 (d, 1 H, J = 6.44 Hz, pyrimidine-H), 8.19 (d, 1 H, J = 4.64 Hz, pyrazine-H), 8.41 (d, 1 H, J = 6.44 Hz, pyrimidine-H), 8.73 (d, 1 H, J = 4.64 Hz, pyrazine-H), 9.13 (s, 1 H, pyrazine-H). 13C NMR (75 MHz, DMSO): δ = 109.6, 118.2, 133.0, 145.8, 154.2, 155.9, 156.8. DEPT 135: δ = 109.6, 118.2, 133.0, 154.2, 155.9. Anal. Calcd for C7H5N3O (147.14): C, 57.14; H, 3.43; N, 28.56. Found: C, 57.53; H, 3.62; N, 28.83.