Abstract
One-pot three-component Strecker reaction of ketones/fluorinated ketones for the preparation of α-aminonitriles/fluorinated α-aminonitriles has been achieved using trimethylsilyl trifluoromethanesulfonate [(CH3 )3 SiOSO2 CF3 , TMSOTf)] as a metal-free strong Lewis acid catalyst. These reactions are simple and clean, giving the products in high yield and high purity. α-Aminonitriles and their fluorinated analogues are important classes of compounds, which show interesting pharmaceutical and biological properties. Presence of fluorine atom increases their biological activities significantly.
Key words
multicomponent reaction - metal-free organocatalyst - TMSOTf - fluorinated ketones - α-aminonitriles
References and Notes
1a
Qiu X.-L.
Meng W.-D.
Quing F.-L.
Tetrahedron
2004,
60:
6711
1b
Sutherland A.
Willis CL.
Nat. Prod. Rep.
2000,
17:
621
1c
Haufe G.
Kröger S.
Amino Acids
1996,
11:
409
1d
Tolman V.
Amino Acids
1996,
11:
15
1e
Kelly NM.
Sutherland A.
Willis CL.
Nat. Prod. Rep.
1997,
14:
205
1f
Dev R.
Badet B.
Meffre P.
Amino Acids
2003,
24:
245
1g
Kukhar VP.
Soloshonok VA.
Fluorine-Containing Amino Acids: Synthesis and Properties
Wiley;
New York:
1995.
2
Filler R.
Kobayashi Y.
Yagupolskii LM.
Biomedical Aspects of Fluorine Chemistry
Elsevier;
Amsterdam:
1993.
3
Relimpio A.
Slebe JC.
Martinez-Carrion M.
Biochem. Biophys. Res. Commun.
1975,
63:
625
4a
Yoder NC.
Kumar K.
Chem. Soc. Rev.
2002,
31:
335
4b
Marsh ENG.
Chem. Biol.
2000,
7:
R153
4c
Salopek-Sondi B.
Vaughan MD.
Skeels MC.
Honek JF.
Luck LA.
J. Biomol. Struct. Dyn.
2003,
21:
235
4d
Bai P.
Luo L.
Peng Z.
Biochemistry
2000,
39:
372
4e
Fischer M.
Schott A.-K.
Kemter K.
Feicht R.
Ritcher G.
Illarionov B.
Eisenreich W.
Gerhardt S.
Cushman M.
Steinbacher S.
Huber R.
Bacher A.
BMC Biochemistry
2003,
4:
18
4f
Danielson MA.
Falke JJ.
Ann. Rev. Biophys. Biomol. Struct.
1996,
25:
163
4g
Ropson IJ.
Frieden C.
Proc. Natl. Acad. Sci. U. S. A.
1992,
89:
7222
4h
Cairi M.
Gerig JT.
Hammond SJ.
Klinkenborg JC.
Nieman RA.
Bull. Magn. Reson.
1983,
5:
157
5
Strecker A.
Justus Liebigs Ann. Chem.
1850,
75:
27
6a
Warmuth R.
Munsch TE.
Stalker RA.
Li B.
Beatty A.
Tetrahedron
2001,
57:
6383
6b
Surendra K.
Krishnaveni NS.
Mahesh A.
Rao KR.
J. Org. Chem.
2006,
71:
2532
6c
Suginome M.
Yamamoto A.
Ito Y.
Chem. Commun.
2002,
1392
6d
Fetterly BM.
Jana NK.
Verkade JG.
Tetrahedron
2006,
62:
440
7a
Matsumoto K.
Kim JC.
Iida H.
Hamana H.
Kumamoto K.
Kotsuki H.
Jenner G.
Helv. Chim. Acta
2005,
88:
1734
7b
Jenner G.
Salen RB.
Kim JC.
Matsumoto K.
Tetrahedron Lett.
2003,
44:
447
8a
Rousset A.
Lasperas M.
Taillades J.
Commeyras A.
Tetrahedron
1980,
36:
2649
8b
Pascal R.
Taillades J.
Commeyras A.
Tetrahedron
1978,
34:
2275
8c
Bejaud M.
Mion L.
Commeyras A.
Tetrahedron Lett.
1975,
34:
2985
8d
Taillades J.
Commeyras A.
Tetrahedron
1974,
30:
127
8e
Taillades J.
Commeyras A.
Tetrahedron
1974,
30:
2493
8f
Taillades J.
Commeyras A.
Tetrahedron
1974,
30:
3407
9
McConathi J.
Martarello L.
Malveaux EJ.
Camp VM.
Simpson NE.
Simpson CP.
Bowers GD.
Olson JJ.
Goodman MM.
J. Med. Chem.
2002,
45:
2240
10
Prakash GKS.
Mathew T.
Panja C.
Alconcel S.
Vaghoo H.
Olah GA.
Proc. Natl. Acad. Sci. U. S. A.
2007,
104:
3703
11a
Berkessel A.
Gröger H.
Asymmetric Organocatalysis - From Biomimetic Concepts to Applications in Asymmetric Synthesis
Wiley-VCH;
Weinheim:
2005.
11b
Schreiner PR.
Chem. Soc. Rev.
2003,
32:
289
11c
Dalko P.
Moisan L.
Angew. Chem. Int. Ed.
2001,
40:
3726
11d
Dalko P.
Moisan L.
Angew. Chem. Int. Ed.
2004,
43:
5138 ; and references therein
11e
Langenbeck W.
Die organischen Katalysatoren und ihre Beziehungen zu den Fermenten
2nd ed.:
Springer;
Berlin:
1949.
11f
Bredig G.
Fiske WS.
Biochem. Z.
1912,
7
11g
Langenbeck W.
Angew. Chem.
1928,
41:
740
11h
Langenbeck W.
Angew. Chem.
1932,
45:
97
12a
Pilli RA.
Dias LC.
Synth. Commun.
1991,
21:
2213
12b
Frick U.
Simchen G.
Synthesis
1984,
929
12c
Emde H.
Domsch D.
Feger H.
Frick U.
Götz A.
Hergott HH.
Hofmann K.
Kober W.
Krägeloh K.
Oesterle T.
Steppan W.
West W.
Simchen G.
Synthesis
1982,
1
12d
Borgulya J.
Bernauer K.
Synthesis
1980,
545
12e
Tsunoda T.
Suzuki M.
Noyori R.
Tetrahedron Lett.
1980,
21:
1357
12f
Emde H.
Simchen G.
Synthesis
1977,
867
12g
Emde H.
Simchen G.
Synthesis
1977,
636
12h
Simchen G.
West W.
Synthesis
1977,
247
13a
Sassaman MB.
Prakash GKS.
Olah GA.
Tetrahedron
1988,
44:
3771
13b
Sassaman MB.
Kotian KD.
Prakash GKS.
Olah GA.
J. Org. Chem.
1987,
52:
4314
14a
Schweizer F.
Hindsgaul O.
Carbohydr. Res.
2006,
341:
1730
14b
Wang C.-X.
Shi X.-X.
Chen G.-R.
Ren Z.-H.
Luo L.
Yan J.
Carbohydr. Res.
2006,
341:
1945
14c
Kawecki R.
Tetrahedron: Asymmetry
2006,
17:
1420
14d
Myers EL.
Butts CE.
Aggarwal VK.
Chem. Commun.
2006,
4434
14e
Liautard V.
Desvergnes V.
Martin OR.
Org. Lett.
2006,
8:
1299
14f
Conrow RE.
Org. Lett.
2006,
8:
2441
14g
Appel B.
Rotzoll S.
Kranich R.
Reinke H.
Langer P.
Eur. J. Org. Chem.
2006,
3638
14h
Anzalone PW.
Mohan RS.
Synthesis
2005,
2661
14i
Tsuda T.
Arihara R.
Sato S.
Koshiba M.
Nakamura S.
Hashimoto S.
Tetrahedron
2005,
61:
10719
14j
Dziedzic M.
Lipner G.
Furman B.
Tetrahedron Lett.
2005,
46:
6861
14k
Sawada D.
Takahashi H.
Shiro M.
Ikegami S.
Tetrahedron Lett.
2005,
46:
2399
14l
Shi M.
Yang Y.-H.
Xu B.
Tetrahedron
2005,
61:
1893
14m
Kang HJ.
Kim SH.
Pae AN.
Koh HY.
Chang MH.
Choi KI.
Han S.-Y.
Cho YS.
Synlett
2004,
2545
14n
Tranel F.
Haufe G.
J. Fluorine Chem.
2004,
125:
1593
14o
Murakami T.
Furusawa K.
Synthesis
2004,
1566
14p
Saito A.
Tanaka A.
Ubukata M.
Nakajima N.
Synlett
2004,
1069
14q
Ali IAI.
El Ashry EH.
Schmidt RR.
Tetrahedron
2004,
60:
4773
14r
Kim BJ.
Sasaki T.
J. Org. Chem.
2004,
69:
3242
14s
Goundri WRF.
Synlett
2003,
1940
15a
Cai S.
Yu B.
Org. Lett.
2003,
5:
3827
15b
Kurihara M.
Hakamata W.
J. Org. Chem.
2003,
68:
3413
15c
Yamanaka M.
Nishida A.
Nakagawa M.
J. Org. Chem.
2003,
68:
3112
15d
Kakuuchi A.
Taguchi T.
Hanzawa Y.
Eur. J. Org. Chem.
2003,
116
15e
Sato Y.
Tateno G.
Seio K.
Sekine M.
Eur. J. Org. Chem.
2002,
87
15f
Sugiura M.
Hagio H.
Hirabayashi R.
Kobayashi S.
J. Am. Chem. Soc.
2001,
123:
12510
15g
Ravichandran S.
Synth. Commun.
2001,
31:
2345
15h
Ishikawa T.
Okano M.
Saito S.
J. Org. Chem.
2001,
66:
4635
15i
Kakuuchi A.
Taguchi T.
Hanzawa Y.
Tetrahedron Lett.
2001,
42:
1547
15j
Aikawa T.
Haynes RK.
Lam K.-P.
Wu K.-Y.
Williams ID.
Yeung L.-L.
Tetrahedron
1999,
55:
89
15k
Procopiou PA.
Linn SM.
Roberts AD.
Tetrahedron
1999,
55:
3649
15l
Olah GA.
Wang Q.
Li X.-y.
Rasul G.
Prakash GKS.
Macromolecules
1996,
29:
1857
16a
Heydari A.
Fatemi P.
Alizadeh A.-A.
Tetrahedron Lett.
1998,
39:
3049
16b
Kobayashi S.
Nagayama S.
Busujima T.
Tetrahedron Lett.
1996,
37:
9221
16c
De S K.
J. Mol. Catal. A: Chem.
2005,
232:
123
16d
Horenstein BA.
Nakanishi K.
J. Am. Chem. Soc.
1989,
111:
6242
16e
Mulzer J.
Meier A.
Buschmann J.
Luger P.
Synthesis
1996,
123
16f
De S K.
Synth. Commun.
2005,
35:
653
16g
De S K.
Gibbs RA.
Tetrahedron Lett.
2004,
45:
7407
16h
Yadav JS.
Reddy BVS.
Eshwaraiah B.
Sreenivas M.
Tetrahedron
2004,
60:
1767
16i
Martínez R.
Ramón DJ.
Yus M.
Tetrahedron Lett.
2005,
46:
8471
16j
Chen W.-Y.
Lu J.
Synlett
2005,
2293
17a
Yadav JS.
Reddy BVS.
Eshwaraiah B.
Sreenivas M.
Vishnumurthy P.
New J. Chem.
2003,
27:
462
17b
Royer L.
De S K.
Gibbs RA.
Tetrahedron Lett.
2005,
46:
4595 ; and references cited therein
17c
Kobayashi S.
Busujima T.
Nagayama S.
Chem. Commun.
1998,
981
18a
Kirsch P.
Modern Fluoroorganic Chemistry
Wiley-VCH;
Weinheim:
2004.
18b
Chambers RD.
Fluorine in Organic Chemistry
Blackwell;
Oxford:
2004.
18c
Smart RE.
Banks BE.
Tatlow JC.
Organofluorine Chemistry: Principles and Commercial Applications
Plenum;
New York:
1994.
18d
Welch JT.
Eswarakrishnan S.
Fluorine in Bioorganic Chemistry
Wiley;
New York:
1991.
18e
Ojima I.
McCarthy JR.
Welch JT.
Biomedical Frontiers of Fluorine Chemistry
ACS Symposium Series 639, American Chemical Society;
Washington DC:
1996.
18f
Banks RE.
Organofluorine Chemicals and their Industrial Applications
Ellis Harwood;
New York:
1979.
18g
Peters R.
Carbon-Fluorine Compounds Chemistry, Biochemistry and Biological Activities
Ciba Foundation Symposium, Elsevier;
Amsterdam:
1972.
18h
Walsh CT.
Annu. Rev. Biochem.
1984,
53:
493
19
General Procedure for the Strecker Reaction of Aldehydes and Ketones
Aldehyde or ketone (2 mmol)/fluorinated ketone (3 mmol), amine (2 mmol), TMSCN (3 mmol), and TMSOTf (5 mol%) were taken in CH2 Cl2 (5 mL) in a sealed pressure tube and the reaction mixture was stirred at r.t. for several hours. Completion of the reaction was monitored by NMR. After completion, the reaction mixture was quenched with H2 O and then extracted with CH2 Cl2 (3 × 15 mL). All the organic layers were collected, washed with brine solution, and dried over anhyd Na2 SO4 . Removal of the solvent under reduced pressure provided the crude products. The crude product was triturated with excess hexanes for several times and removal of the solvents under reduced pressure afforded the Strecker product (α-aminonitriles) in almost analytically pure form (by NMR). The products were characterized by analyzing their spectral data and comparing them with those of the authentic samples (see supporting information, which is available from the authors, and ref. 10).