Subscribe to RSS
DOI: 10.1055/s-2007-990900
A Novel and Efficient Route for the Synthesis of Hydroxylated 2,3-Diarylxanthones
Publication History
Publication Date:
21 November 2007 (online)
Abstract
A novel, efficient and general route for the synthesis of hydroxylated 2,3-diarylxanthones is described. 3-Bromo-2-styrylchromone, the key intermediate of this synthesis, is obtained by a Baker-Venkataraman rearrangement of the appropriate 2′-cinnamoyloxyacetophenone, followed by a one-pot reaction with phenyltrimethylammonium tribromide. The Heck reaction of these bromochromones with substituted styrenes gives methoxylated 2,3-diarylxanthones. The cleavage of the methyl groups with BBr3 gives the desired hydroxylated 2,3-diarylxanthones.
Key words
hydroxylated diarylxanthones - 3-bromo-2-styrylchromones - phenyltrimethylammonium tribromide - Heck reaction - demethylation
-
1a
Hostettman K.Hostettman M. In Methods in Plant Biochemistry, Plant Phenolics Vol. 1:Dey PM.Harbone JB. Academic Press; London: 1989. p.493 -
1b
Bennett GJ.Lee H.-H. Phytochemistry 1989, 28: 967 -
1c
Gales L.Damas AM. Curr. Med. Chem. 2005, 12: 2499 -
2a
Vieira LMM.Kijjoa A. Curr. Med. Chem. 2005, 12: 2413 -
2b
Roberts JC. Chem. Rev. 1961, 591 - 3
Pinto MMM.Sousa ME.Nascimento MSJ. Curr. Med. Chem. 2005, 12: 2517 -
4a
Dube M.Zunker K.Neidhart S.Carle R.Steinhart H.Paschke A. J. Agric. Food Chem. 2004, 52: 3938 -
4b
Pfister JR.Ferraresi RW.Harrison IT.Rooks WH.Freid JH. J. Med. Chem. 1978, 21: 669 -
5a
Abdel-Lateff A.Klemke C.König GM.Wright AD. J. Nat. Prod. 2003, 66: 706 -
5b
Fukai T.Yonekawa M.Hou A.-J.Nomura T.Sun H.-D.Uno J. J. Nat. Prod. 2003, 66: 1118 -
5c
Mackeen MM.Ali AM.Lajis NH.Kawazu K.Hassan Z.Amran M.Habsah M.Mooi LY.Mohamed SM. J. Ethanopharmacol. 2000, 72: 395 -
6a
Park HH.Park Y.-D.Han J.-M.Im K.-R.Lee BW.Jeong IY.Jeong T.-S.Lee WS. Bioorg. Med. Chem. Lett. 2006, 16: 5580 -
6b
Lin CN.Chung MI.Liou SJ.Lee TH.Wang JP. J. Pharm. Pharmacol. 1996, 48: 532 -
7a
Riscoe M.Kelly JX.Winter R. Curr. Med. Chem. 2005, 12: 2539 -
7b
Portela C.Afonso CMM.Pinto MMM.Ramos MJ. Bioorg. Med. Chem. 2004, 12: 3313 -
7c
Dua VK.Ojha VP.Roy R.Joshi BC.Valecha N.Devi CU.Batnagar MC.Sharma VP.Subbarao SK. J. Ethanopharmacol. 2004, 95: 247 -
8a
Zhang H.-Z.Kasibhatla S.Wang Y.Herich J.Guastella J.Tseng B.Drewe J.Cai SX. Bioog. Med. Chem. 2004, 12: 309 -
8b
Rewcastle GW.Atwell GJ.Zhang L.Baguley BC.Denny WA. J. Med. Chem. 1991, 34: 217 -
9a
Merza J.Aumond M.-C.Rondeau D.Dumontet V.Le Ray A.-M.Séraphin D.Richomme P. Phytochemistry 2004, 65: 2915 -
9b
Hay A.-E.Aumond M.-C.Mallet S.Dumontet V.Litaudon M.Rondeau D.Richomme P. J. Nat. Prod. 2004, 67: 707 -
9c
Pauletti PM.Castro-Gamboa I.Silva DHS.Young MCM.Tomazela DM.Eberlin MN.Bolzani VS. J. Nat. Prod. 2003, 66: 1384 -
10a
Park KH.Park Y.-D.Han J.-M.Im K.-R.Lee BW.Jeong IY.Jeong T.-S.Lee WS. Bioorg. Med. Chem. Lett. 2006, 16: 5580 -
10b
Lee BW.Lee JH.Lee S.-T.Lee HS.Lee WS.Jeong T.-S.Park WS. Bioorg. Med. Chem. Lett. 2005, 15: 5548 -
11a
Garrity AR,Morton GAR, andMorton JC. inventors; US Patent, 6730333. -
11b
Sellés AJN.Castro HTV.Agüero-Agüero J.González-González J.Naddeo F.De Simone F.Rastrelli L. J. Agric. Food Chem. 2002, 50: 762 - 12
Sousa ME.Pinto MMM. Curr. Med. Chem. 2005, 12: 2447 - 13
Santos CMM.Silva AMS.Cavaleiro JAS. Synlett 2005, 3095 -
14a
Mahal HS.Venkataraman K. J. Chem. Soc. 1934, 1767 -
14b
Baker W. J. Chem. Soc. 1933, 1381 - 17
Fougerousse A.Gonzalez E.Brouillard R. J. Org. Chem. 2000, 65: 583 -
18a
Trzeciak AM.Ziókoeski JJ. Coord. Chem. Rev. 2007, 251: 1281 -
18b
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4442 -
18c
Farina V. Adv. Synth. Catal. 2004, 346: 1553 -
22a
Punna S.Meunier UH.Finn MG. Org. Lett. 2004, 6: 2777 -
22b
Nordvik T.Brinker UH. J. Org. Chem. 2003, 68: 9394
References and Notes
Typical Experimental Procedure: Phenyltrimethylammonium tribromide (PTT; 2.1 g, 5.5 mmol) was added to a THF (60 mL) solution of the appropriate 5-aryl-3-hydroxy-1-(2-hydroxyphenyl)-2,4-pentadien-1-ones 4a-c (5 mmol). The reaction mixture was stirred and allowed to stand at r.t. for 12 h. After that period, the solution was poured into ice (50 g) and H2O (80 mL), stirred for 20 min and the yellow solid was removed by filtration. The residue was taken in CHCl3 (50 mL) and washed with H2O (3 × 50 mL). The organic layer was collected, the solvent was evaporated to dryness and the residue was purified by silica gel column chromatography using CH2Cl2 as eluent. The solvent was evaporated and the residue was recrystallized from EtOH to give the 3-bromo-2-styrylchromones 5a-c in good yields (5a: 67%; 5b: 53%; 5c: 64%).
16Physical Data of 3-Bromo-3′,4′-dimethoxy-2-styryl-chromone (5c): mp 187-189 ºC. 1H NMR (300.13 MHz, CDCl3): δ = 3.95 (s, 3 H, 4′-OMe), 3.98 (s, 3 H, 3′-OMe), 6.92 (d, J = 8.3 Hz, 1 H, H-5′), 7.14 (d, J = 2.0 Hz, 1 H, H-2′), 7.24 (dd, J = 2.0, 8.3 Hz, 1 H, H-6′), 7.33 (d, J = 15.8 Hz, 1 H, H-α), 7.41 (ddd, J = 0.8, 7.7, 7.8 Hz, 1 H, H-6), 7.53 (d, J = 7.9 Hz, 1 H, H-8), 7.66 (d, J = 15.8 Hz, 1 H, H-β), 7.70 (ddd, J = 1.6, 7.7, 7.9 Hz, 1 H, H-7), 8.23 (dd, J = 1.6, 7.8 Hz, 1 H, H-5). 13C NMR (75.47 MHz, CDCl3): δ = 55.96, 55.99 (3′-OMe, 4′-OMe), 109.0 (C-3), 109.6 (C-2′), 111.1 (C-5′), 116.9 (C-α), 117.4 (C-8), 122.1 (C-10), 122.6 (C-6′), 125.3 (C-6), 126.4 (C-5), 127.9 (C-1′), 133.9 (C-7), 139.6 (C-β), 149.3 (C-3′), 151.2 (C-4′), 154.9 (C-9), 158.7 (C-2), 172.7 (C-4). MS (ESI+): m/z (%) = 387 (19) ([M + H]+, 79Br), 389 (20) ([M + H]+, 81Br), 409 (9) ([M + Na]+, 79Br), 411 (9) ([M + Na]+, 81Br), 425 (4) ([M + K]+, 79Br), 427 (4) ([M + K]+, 81Br), 795 (7) ([2 × M + Na]+, 79Br), 797 (15) ([2 × M + Na]+, 81Br). Anal. Calcd for C19H15BrO4: C, 58.93; H, 3.90. Found: C, 58.53; H, 3.84.
19Typical Experimental Procedure: To a mixture of the appropriate 3-bromo-2-styrylchromones 5a-c (0.4 mmol), triphenylphosphine (10.5 mg, 0.04 mmol), tetrakis(triphenylphosphine)palladium(0) (23.1 mg, 0.02 mmol) and triethylamine (55.8 µL, 0.4 mmol) in N-methyl-2-pyrrolidinone (6 mL) was added the appropriate styrene 6a-c (2 mmol for styrene 6a and 0.8 mmol for styrenes 6b,c). The reaction mixture was stirred under different conditions of time and temperature according to the substituents in the compounds (Table [1] ). Then, the mixture was poured into H2O (20 mL) and ice (10 g) and extracted with Et2O (4 × 25 mL) and dried over anhyd Na2SO4. The residue was evaporated, taken in CH2Cl2 (15 mL) and purified by TLC (eluent: CH2Cl2-light petroleum, 7:3). Two spots were collected in each case: the major one, having higher R f value, consisted of 2,3-diarylxanthones 7a-i and the minor one, with lower R f value, consisted of 2,3-diaryl-3,4-dihydroxanthones 8a-i. The 2,3-diarylxanthones 7a-i were recrystallized from EtOH in yields presented in Table [1] .
20Physical Data of 2-(4-Methoxyphenyl)-3-(3,4-dimeth-oxyphenyl)xanthone (7h): mp 148-150 °C. 1H NMR (300.13 MHz, CDCl3): δ = 3.60 (s, 3 H, 4′′-OMe), 3.80 (s, 3 H, 4′-OMe), 3.90 (s, 3 H, 3′′-OMe), 6.61 (d, J = 2.0 Hz, 1 H, H-2′′), 6.81 (d, J = 8.8 Hz, 2 H, H-3′, H-5′), 6.83 (d, J = 8.0 Hz, 1 H, H-5′′), 6.90 (dd, J = 2.0, 8.0 Hz, 1 H, H-6′′), 7.11 (d, J = 8.8 Hz, 2 H, H-2′, H-6′), 7.40 (ddd, J = 0.9, 7.7, 7.8 Hz, 1 H, H-7), 7.52 (dd, J = 0.9, 8.1 Hz, 1 H, H-5), 7.56 (s, 1 H, H-4), 7.75 (ddd, J = 1.7, 7.7, 8.1 Hz, 1 H, H-6), 8.33 (s, 1 H, H-1), 8.37 (dd, J = 1.7, 7.8 Hz, 1 H, H-8). 13C NMR (75.47 MHz, CDCl3): δ = 55.2 (4′-OMe), 55.6 (4′′-OMe), 55.8 (3′′-OMe), 110.7 (C-5′′), 113.2 (C-2′′), 113.6 (C-3′, C-5′), 118.0 (C-5), 119.0 (C-4), 120.4 (C-9a), 121.9 (C-8a, C-6′), 123.9 (C-7), 126.7 (C-8), 128.1 (C-1), 130.9 (C-2′, C-6′), 132.4, 132.5 (C-1′, C-1′′), 134.7 (C-6), 136.6 (C-2), 147.3 (C-3), 148.2, 148.5 (C-3′′, C-4′′), 155.1 (C-4a), 156.3 (C-4b), 158.6 (C-4′), 177.0 (C-9). MS (EI): m/z (%) = 438 (100) [M+·], 423 (11), 407 (14), 380 (8), 363 (8), 309 (8), 308 (31), 307 (25), 293 (14), 292 (12), 291 (12), 277 (10), 250 (7), 222 (6), 188 (24), 151 (8), 102 (9), 86 (8), 84 (11). Anal. Calcd for C28H22O5: C, 76.70, H, 5.06. Found: C, 76.41; H, 5.42.
21Physical Data of 2-(4-Methoxyphenyl)-3-(3,4-dimeth-oxyphenyl)-3,4-dihydroxanthone (8h): yellow oil. 1H NMR (300.13 MHz, CDCl3): δ = 2.98 (dd, J = 1.3, 17.2 Hz, 1 H, H-4 trans ), 3.62 (dd, J = 8.8, 17.2 Hz, 1 H, H-4 cis ), 3.76 (s, 3 H, 3′′-OMe), 3.79 (s, 6 H, 4′-OMe, 4′′-OMe), 4.22 (dd, J = 1.3, 8.8 Hz, 1 H, H-3), 6.71 (d, J = 8.1 Hz, 1 H, H-5′′), 6.81-6.86 (m, 2 H, H-2′′, H-6′′), 6.83 (d, J = 8.9 Hz, 2 H, H-3′, H-5′), 7.36 (d, J = 8.0 Hz, 2 H, H-5), 7.38 (ddd, J = 1.4, 7.6, 7.7 Hz, 1 H, H-7), 7.44 (s, 1 H, H-1), 7.44 (d, J = 8.9 Hz, 2 H, H-2′, H-6′), 7.60 (ddd, J = 1.6, 7.7, 8.0 Hz, 1 H, H-6), 8.28 (dd, J = 1.6, 7.6 Hz, 1 H, H-8). 13C NMR (75.47 MHz, CDCl3): δ = 36.8 (C-4), 41.4 (C-3), 55.3, 55.75, 55.80 (4′-OMe, 3′′-OMe, 4′′-OMe), 110.4 (C-2′′), 111.4 (C-5′′), 113.9 (C-3′, C-5′), 114.8 (C-1), 116.9 (C-9a), 118.0 (C-5), 119.2 (C-6′′), 123.8 (C-8a), 125.0 (C-7), 126.2 (C-8), 126.9 (C-2′, C-6′), 131.7 (C-1′), 132.9 (C-6), 133.1 (C-1′′), 135.3 (C-2), 148.0 (C-4′′), 149.1 (C-3′′), 155.9 (C-4b), 159.2 (C-4′), 162.2 (C-4a), 174.2 (C-9). MS (EI): m/z (%) = 440 (13) [M+·], 439 (26), 438 (100), 423 (13), 497 (14), 391 (7), 380 (7), 363 (7). HRMS (EI): m/z calcd for C28H24O5: 440.1624; found: 440.1624.
23Typical Experimental Procedure: A solution of the appropriate 2,3-diarylxanthones 7b-i in freshly distilled CH2Cl2 (3 mL) was cooled to - 78 °C under nitrogen. A solution of BBr3 in 0.1 M CH2Cl2 (2.5 equiv for each methyl group to be cleaved) was gradually added. The reaction mixture was stirred at r.t. for a period of time according to the substituents in the compounds (1 h for each group to be cleaved). After that period, the solution was poured into H2O (20 mL) and vigorously stirred until the formation of a yellow precipitate. The solid was washed abundantly with H2O (4 × 50 mL) and then with light petroleum (4 × 20 mL) to afford the hydroxylated 2,3-diarylxanthones 9b-i in good yields (9b: 72%; 9c: 80%; 9d: 82%; 9e: 94%; 9f: 80%; 9g: 80%; 9h: 94%; 9i: 70%).
24Physical Data of 2-(4-Hydroxyphenyl)-3-(3,4-dihy-droxyphenyl)xanthone (9h): mp 277-279 °C. 1H NMR (300.13 MHz, DMSO-d 6): δ = 6.50 (dd, J = 2.0, 8.1 Hz, 1 H, H-6′′), 6.62 (d, J = 2.0 Hz, 1 H, H-2′′), 6.67 (d, J = 8.1 Hz, 1 H, H-5′′), 6.70 (d, J = 8.4 Hz, 2 H, H-3′, H-5′), 6.99 (d, J = 8.4 Hz, 2 H, H-2′, H-6′), 7.50 (dd, J = 7.6, 7.7 Hz, 1 H, H-7), 7.52 (s, 1 H, H-4), 7.68 (d, J = 8.1 Hz, 1 H, H-5), 7.89 (ddd, J = 1.5, 7.6, 8.1 Hz, 1 H, H-6), 8.01 (s, 1 H, H-1), 8.22 (dd, J = 1.5, 7.7 Hz, 1 H, H-8), 8.97 (s, 1 H, 4′′-OH), 9.15 (s, 1 H, 3′′-OH), 9.51 (s, 1 H, 4′-OH). 13C NMR (75.47 MHz, DMSO-d 6): δ = 115.1 (C-3′, C-5′), 115.5 (C-5′′), 116.9 (C-2′′), 118.3 (C-5), 118.9 (C-4), 119.6 (C-9a), 120.8 (C-6′′), 121.3 (C-8a), 124.4 (C-7), 126.1 (C-8), 127.0 (C-1), 130.5 (C-1′, C-2′, C-6′), 130.7 (C-1′′), 135.5 (C-6), 136.6 (C-2), 145.0 (C-3′′), 145.3 (C-4′′), 147.7 (C-3), 154.4 (C-4a), 155.8 (C-4b), 156.4 (C-4′), 175.7 (C-9). MS (EI): m/z (%) = 396 (100) [M+·], 395 (6), 380 (7), 379 (11), 349 (8), 98 (10), 97 (10), 83 (10). HRMS (EI): m/z calcd for C25H16O5: 396.0998; found: 396.0996.