Subscribe to RSS
DOI: 10.1055/s-2007-991056
A Concise Synthesis of (-)-Deoxoprosopinine
Publication History
Publication Date:
25 September 2007 (online)
Abstract
A simple and highly efficient approach to (-)-deoxoprosopinine from racemic epoxide as a starting material is described employing a Jacobsen’s hydrolytic kinetic resolution (HKR) and Sharpless asymmetric dihydroxylation (AD) as key steps.
Key words
Jacobsen’s HKR - Sharpless AD - hydroboration-oxidation - piperidine alkaloids - total synthesis
- For reviews that include piperidine alkaloids, see:
-
1a
Strunz GM.Findlay JA. In The Alkaloids Vol. 26:Brossi A. Academic Press; New York: 1985. p.89 -
1b
Foder GB.Colasanti B. The Pyridine and Piperidine Alkaloids: Chemistry and Pharmacology, In Alkaloids: Chemical and Biological Perspectives Vol. 3:Pelletier SW. Wiley; New York: 1985. p.1 -
1c
Numata A.Ibuka T. In The Alkaloids Vol. 31:Brossi A. Academic Press; New York: 1987. p.193 ; and references therein -
1d
Schneider MJ. Pyridine and Piperidine Alkaloids: An Update, In Alkaloids: Chemical and Biological Perspectives Vol. 10:Pelletier SW. Pergamon; Oxford: 1996. p.155 -
1e
Wang CJ.Wuonola MA. Org. Prep. Proced. Int. 1992, 24: 585 -
1f
Laschat S.Dickner T. Synthesis 2000, 1781 -
1g
Weintraub PM.Sabd JS.Kane JM.Borcherding DR. Tetrahedron 2003, 59: 2953 - Prosopis alkaloids from the leaves, stems, and roots of Prosopis africana:
-
2a
Ratle G.Monseur X.Das BC.Yassi J.Khuong-Huu Q.Goutarel R. Bull. Soc. Chim. Fr. 1966, 2945 -
2b
Khuong-Huu Q.Ratle G.Monseur X.Goutarel R. Bull. Soc. Chim. Belg. 1972, 81: 425 -
2c
Khuong-Huu Q.Ratle G.Monseur X.Goutarel R. Bull. Soc. Chim. Belg. 1972, 81: 443 - Previous asymmetric synthesis of deoxoprosopinine:
-
3a
Saitoh Y.Moriyama Y.Takahashi T. Tetrahedron Lett. 1980, 21: 75 -
3b
Saitoh Y.Moriyama Y.Hirota H.Takahashi T.Khuong-Huu Q. Bull. Chem. Soc. Jpn. 1981, 54: 488 -
3c
Ciufolini MA.Hermann CW.Whitmire KH.Byrne NE. J. Am. Chem. Soc. 1989, 111: 3473 -
3d
Tadano K.Takao K.Nigawara Y.Nishino E.Takagi I.Maeda K.Ogawa S. Synlett 1993, 565 -
3e
Takao K.Nigawara Y.Nishino E.Takagi I.Maeda K.Tadano K.Ogawa S. Tetrahedron 1994, 50: 5681 -
3f
Yuasa Y.Ando J.Shibuya S. Tetrahedron: Asymmetry 1995, 6: 1525 -
3g
Yuasa Y.Ando J.Shibuya S. J. Chem. Soc., Perkin Trans. 1 1996, 793 -
3h
Kadota I.Kawada M.Muramatsu Y.Yamamoto Y. Tetrahedron Lett. 1997, 38: 7469 -
3i
Kadota I.Kawada M.Muramatsu Y.Yamamoto Y. Tetrahedron: Asymmetry 1997, 8: 3887 -
3j
Agami C.Couty F.Mathieu H. Tetrahedron Lett. 1998, 39: 3505 -
3k
Agami C.Couty F.Lam H.Mathieu H. Tetrahedron 1998, 54: 8783 -
3l
Comins DL.Sandelier MJ.Grillo TA. J. Org. Chem. 2001, 66: 6829 -
3m
Wang Q.Sasaki NA. J. Org. Chem. 2004, 69: 4767 -
4a
Pandey SK.Kandula SV.Kumar P. Tetrahedron Lett. 2004, 45: 5877 -
4b
Pandey SK.Kumar P. Tetrahedron Lett. 2005, 46: 4091 -
4c
Pandey SK.Kumar P. Tetrahedron Lett. 2005, 46: 6625 -
4d
Kumar P.Naidu SV. J. Org. Chem. 2005, 70: 4207 -
4e
Kumar P.Naidu SV.Gupta P. J. Org. Chem. 2005, 70: 2843 -
4f
Kumar P.Bodas MS. J. Org. Chem. 2005, 70: 360 -
4g
Kumar P.Gupta P.Naidu SV. Chem. Eur. J. 2006, 12: 1397 -
4h
Kumar P.Naidu SV. J. Org. Chem. 2006, 71: 3935 -
4i
Pandey SK.Kumar P. Tetrahedron Lett. 2006, 47: 4167 -
4j
Pandey SK.Kumar P. Eur. J. Org. Chem. 2007, 369 - 5
Schaus SE.Brandes BD.Larrow JF.Tokunaga M.Hansen KB.Gould AE.Furrow ME.Jacobsen EN. J. Am. Chem. Soc. 2002, 124: 1307 - 6
Staudinger H.Meyer J. Helv. Chim. Acta 1919, 2: 635 - For reviews on the Swern oxidation, see:
-
7a
Tidwell TT. Synthesis 1990, 857 -
7b
Tidwell TT. Org. React. 1990, 39: 297 -
8a
Becker H.Sharpless KB. Angew. Chem., Int. Ed. Engl. 1996, 35: 448 -
8b
Kolb HC.VanNieuwenhze MS.Sharpless KB. Chem. Rev. 1994, 94: 2483 -
8c
Torri S.Liu P.Bhuvaneswari N.Amatore C.Jutand A. J. Org. Chem. 1996, 61: 3055 - 10
Fleming PR.Sharpless KB. J. Org. Chem. 1991, 56: 2869
References and Notes
The diastereoselectivity was determined from 1H NMR and 13C NMR spectral data. Spectral data of compound 11: mp 137 °C; [α]D 25 +6.90 (c 1.00, CHCl3). IR (CHCl3): ν = 3434, 3018, 2927, 1719, 1508, 1216 cm-1. 1H NMR (200 MHz, CDCl3): δ = 0.89 (t, J = 5.95 Hz, 3 H), 1.26-1.70 (m, 29 H), 2.27 (br s, 2 H), 3.62-3.71 (m, 1 H), 3.91 (d, J = 6.45 Hz, 1 H), 4.06 (d, J = 1.61 Hz, 1 H), 4.29 (q, J = 6.72, 13.70 Hz, 2 H), 4.55 (d, J = 8.87 Hz, 1 H), 5.10 (s, 2 H), 7.32-7.38 (m, 5 H) ppm. 13C NMR (50 MHz, CDCl3): δ = 14.0, 22.6, 25.8, 29.2, 29.6, 29.8, 31.4, 31.8, 35.5, 51.1, 61.8, 66.4, 72.3, 73.4, 127.9, 128.4, 136.5, 156.2, 173.4 ppm. ESI-MS: m/z = 516 [M + Na]+. Anal. Calcd (%) for C28H47NO6: C, 68.12; H, 9.60; N, 2.84. Found: C, 68.17; H, 9.58; N, 2.82.
11Spectral data of compound 13: mp 96 °C; [α]D 25 +5.65 (c 0.60, CHCl3). IR (CHCl3): ν = 3583, 3436, 3019, 2928, 1725, 1519, 1455, 1215 cm-1. 1H NMR (200 MHz, CDCl3): δ = 0.88 (t, J = 6.07 Hz, 3 H), 1.26-1.79 (m, 30 H), 2.11 (br s, 1 H), 2.65-2.74 (m, 1 H), 3.58 (d, J = 4.06 Hz, 1 H), 4.11-4.17 (m, 1 H) 4.21 (q, J = 7.12, 13.86 Hz, 2 H) ppm. 13C NMR (50 MHz, CDCl3): δ = 14.0, 14.2, 22.6, 26.1, 28.0, 29.3, 29.5, 29.6, 31.8, 35.8, 51.6, 60.8, 61.5, 65.5, 172.2 ppm. ESI-MS: m/z = 342 [M + H]+. Anal. Calcd (%) for C20H39NO3: C, 70.33; H, 11.51; N, 4.10. Found: C, 70.35; H, 11.48; N, 4.12.