Subscribe to RSS
DOI: 10.1055/s-2007-992352
Remarkable Solvent Effect on Pd(0)-Catalyzed Deprotection of Allyl Ethers Using Barbituric Acid Derivatives: Application to Selective and Successive Removal of Allyl, Methallyl, and Prenyl Ethers
Publication History
Publication Date:
08 November 2007 (online)
Abstract
Pd(0)-catalyzed deprotection of allyl ethers using barbituric acid derivatives in protic polar solvent such as MeOH and aqueous 1,4-dioxane proceeds at room temperature without affecting a wide variety of functional groups. Control of the reaction temperature allows selective and successive cleavage of allyl, methallyl, and prenyl ethers. A study of ligand effects on the deprotection reveals that the improved reactivity in MeOH results from the accelerated oxidative addition to Pd(0).
Key words
barbituric acid - Pd(0)-catalyzed deprotection - allyl ethers - protic polar solvent - methallyl ethers - prenyl ethers
-
1a
Guibé F. Tetrahedron 1997, 53: 13509 -
1b
Guibé F. Tetrahedron 1998, 54: 2967 -
2a
Hutchins RO.Learn K. J. Org. Chem. 1982, 47: 4380 -
2b
Honda M.Morita H.Nagakura I. J. Org. Chem. 1997, 62: 8932 -
2c
Opatz T.Kunz H. Tetrahedron Lett. 2000, 41: 10185 -
2d
Chandrasekhar S.Reddy CR.Rao RJ. Tetrahedron 2001, 57: 3435 -
2e
Vutukuri DR.Bharathi P.Yu Z.Rajasekaran K.Tran M.-H.Thayumanavan S. J. Org. Chem. 2003, 68: 1146 -
2f
Tsukamoto H.Kondo Y. Synlett 2003, 1061 -
2g
Tsukamoto H.Suzuki T.Kondo Y. Synlett 2003, 1105 -
3a
Kamal A.Laxman E.Rao NV. Tetrahedron Lett. 1999, 40: 371 -
3b
Bartoli G.Cupone G.Dalpozzo R.De Nino A.Maiuolo L.Marcantoni E.Procopio A. Synlett 2001, 1897 -
3c
Kitov PI.Bundle DR. Org. Lett. 2001, 3: 2835 -
3d
Chen F.-E.Ling X.-H.He Y.-P.Peng X.-H. Synthesis 2001, 1772 -
3e
Yang SG.Park MY.Kim YH. Synlett 2002, 492 -
3f
Ohkubo M.Mochizuki S.Sano T.Kawaguchi Y.Okamoto S. Org. Lett. 2007, 9: 773 -
3g
Bailey WF.England MD.Mealy MJ.Thongsornkleeb C.Teng L. Org. Lett. 2000, 2: 489 -
3h
Taniguchi T.Ogasawara K. Angew. Chem. Int. Ed. 1998, 37: 1136 -
3i
Dahlen A.Sundgren A.Lahmann M.Oscarson S.Hilmersson C. Org. Lett. 2003, 5: 4085 -
3j
Thomas RM.Mohan GH.Iyengar DS. Tetrahedron Lett. 1997, 38: 4721 -
3k
Chary KP.Mohan GH.Iyengar DS. Chem. Lett. 1999, 28: 1223 -
3l
RajaRam S.Chary KP.Salahuddin S.Iyengar DS. Synth. Commun. 2002, 30: 133 -
3m
Tanaka S.Saburi H.Ishibashi Y.Kitamura M. Org. Lett. 2004, 6: 1873 -
3n
Tanaka S.Saburi H.Kitamura M. Adv. Synth. Catal. 2006, 348: 375 -
3o
Murakami H.Minami T.Ozawa F. J. Org. Chem. 2004, 69: 4482 -
4a
Bartnicka H.Bojanowska I.Kalinowski MK. Aust. J. Chem. 1991, 44: 1077 -
4b
Headly AD.Starnes SD.Wilson LY.Famini GR. J. Org. Chem. 1994, 59: 8040 -
4c
Mollin J.Pavelek Z.Navrátilová J.Recmanová A. Coll. Czech. Chem. Commun. 1985, 50: 2670 - 5 In this time, the deallylation of 2a in THF proceeded even at room temperature, but required 24 hours for its completion (Table 1, entry 6). Use of Pd(PPh3)4 prepared according to the following literature procedure instead of commercially available one might improve the reactivity:
Coulson DR. Inorg. Synth. 1972, 13: 121 -
7a
Jursic BS.Neumann DM. Tetrahedron Lett. 2001, 42: 4103 -
7b
Jursic BS.Stevens ED. Tetrahedron Lett. 2003, 44: 2203 - For sulfone-catalyzed selective and successive cleavage of prenyl and methallyl ethers in the presence of allyl ethers, see:
-
8a
Markovic D.Vogel P. Org. Lett. 2004, 6: 2693 -
8b
Markovic D.Steunenberg P.Ekstrand M.Vogel P. Chem. Commun. 2004, 2444 - For cleavage of prenyl ethers in the presence of allyl ethers, see:
-
9a
Sharma GVM.Ilangovan A.Mahalingam AK. J. Org. Chem. 1998, 63: 9103 -
9b
Sharma GVM.Reddy CG.Krishna PR. Synlett 2003, 1728 -
9c
Tsuritani T.Shinokubo H.Oshima K. Tetrahedron Lett. 1999, 40: 8121 -
9d
Vatéle J.-M. Synlett 2001, 1989 -
9e
Vatéle J.-M. Synlett 2002, 507 -
9f
Vatéle J.-M. Tetrahedron 2002, 58: 5689 -
9g
Babu KS.Raju BC.Srinivas PV.Rao JM. Tetrahedron Lett. 2003, 44: 2525 -
9h
Babu KS.Raju BC.Srinivas PV.Rao AS.Kumar SP.Rao JM. Chem. Lett. 2003, 32: 704 -
11a
Wunberg T.Kallus C.Opatz T.Henke S.Schmidt W.Kunz H. Angew. Chem. Int. Ed. 1998, 37: 2503 -
11b
Kallus C.Opatz T.Wunberg T.Schmidt W.Henke S.Kunz H. Tetrahedron Lett. 1999, 40: 7783 - 12
Frost CG.Howarth J.Williams JMJ. Tetrahedron: Asymmetry 1992, 3: 1089 -
13a
Sakaki S.Nishikawa M.Ohyoshi A. J. Am. Chem. Soc. 1980, 102: 4062 -
13b
Åkermark B.Zetterberg K.Hansson S.Krakenberger B.Vitagliano A.
J. Organomet. Chem. 1987, 335: 133 -
13c
Åkermark B.Krakenberger B.Hansson S.Vitagliano A. Organometallics 1987, 6: 620 -
13d
Szabó KJ. Organometallics 1996, 15: 1128 -
13e
Szabó KJ. J. Am. Chem. Soc. 1996, 118: 7818 -
13f
Ross J.Chen W.Xu L.Xiao J. Organometallics 2001, 20: 138 - For Pd(0)-catalyzed direct allylation of 1,3-dicarbonyl compounds with allyl alcohols in aqueous media, see:
-
14a
Manabe K.Kobayashi S. Org. Lett. 2003, 5: 3241 -
14b
Kinoshita H.Shiokubo H.Oshima K. Org. Lett. 2004, 6: 4085 -
14c
Kinoshita H.Shiokubo H.Oshima K. Angew. Chem. Int. Ed. 2005, 44: 2097 - For Pd(0)-catalyzed direct allylation of 1,3-dicarbonyl compounds with allylic alcohols in nonaqueous media, see:
-
15a
Tamaru Y.Horino Y.Araki M.Tanaka S.Kimura M. Tetrahedron Lett. 2000, 41: 5705 -
15b
Kimura M.Mukai R.Tanigawa N.Tanaka S.Tamaru Y. Tetrahedron 2003, 59: 7767 -
15c
Ozawa F.Okamoto H.Kawagishi S.Yamamoto S.Minami T.Yoshifuji M. J. Am. Chem. Soc. 2002, 124: 10968 -
15d
Ozawa F.Ishiyama T.Yamamoto S.Kawagishi S.Murakami H.Yoshifuji M. Organometallics 2004, 23: 1698 -
15e
Kayaki Y.Koda T.Ikariya T. J. Org. Chem. 2004, 69: 4989 -
15f
Hou R.-S.Wang H.-M.Huang H.-Y.Chen L.-C. Heterocycles 2005, 65: 1917 -
15g
Patil NT.Yamamoto Y. Tetrahedron Lett. 2004, 45: 3101 -
15h
Yang S.-C.Hsu Y.-C.Gan K.-H. Tetrahedron 2006, 62: 3949 - The following reports also suggested that alcoholic solvents would promote the oxidative addition to Pd(0) catalyst:
-
16a
Tsukamoto H.Suzuki R.Kondo Y. J. Comb. Chem. 2006, 8: 289 -
16b
Yokogi M.Kuwano R. Tetrahedron Lett. 2007, 48: 6109
References and Notes
Representative Procedure for Deprotection of Allyl Ether: To a test tube containing 2a (0.13 mmol), 1a (0.27 mmol), and Pd(PPh3)4 (7 µmol) was added MeOH (0.4 mL) under argon. The resulting mixture was sealed with a screw cap and agitated at r.t. for 1 h. The mixture was partitioned between EtOAc and sat. aq Na2CO3 and the aqueous layer was extracted with EtOAc (2 ×). The combined organic layers were washed with brine, dried over MgSO4, and concentrated in vacuo. The residue was purified by silica gel chromatography to yield the deallylated product 3a.
10Characterization data for compounds 9-14.
4-Methoxyphenyl 3-O-Allyl-4-O-benzyl-2-O-methallyl-6-O-prenyl-β-d-galactopyranoside (9): 1H NMR (400 MHz, CDCl3): δ = 7.25-7.40 (m, 5 H), 6.99 (d, J = 8.8 Hz, 2 H), 6.78 (d, J = 8.8 Hz, 2 H), 5.93 (ddt, J = 5.6, 10.4, 17.2 Hz, 1 H), 5.33 (d, J = 17.2 Hz, 1 H), 5.27 (t, J = 6.8 Hz, 1 H), 5.18 (d, J = 10.4 Hz, 1 H), 5.01 (s, 1 H), 4.96 (d, J = 11.6 Hz, 1 H), 4.87 (s, 1 H), 4.77 (d, J = 7.6 Hz, 1 H), 4.67 (d, J = 11.6 Hz, 1 H), 4.33 (d, J = 12.0 Hz, 1 H), 4.23 (d, J = 12.0 Hz, 1 H), 4.19 (d, J = 5.6 Hz, 2 H), 3.82-3.95 (m, 4 H), 3.75 (s, 3 H), 3.51-3.61 (m, 3 H), 3.44 (dd, J = 2.8, 9.6 Hz, 1 H), 1.78 (s, 3 H), 1.72 (s, 3 H), 1.62 (s, 3 H). 13C NMR (100 MHz, C6D6): δ = 155.8, 152.4, 143.3, 139.6, 136.2, 135.7, 128.5, 128.1, 127.6, 122.0, 119.2, 116.0, 114.9, 111.7, 103.9, 82.5, 79.3, 77.1, 75.2, 74.5, 74.0, 71.9, 68.5, 68.0, 55.2, 25.8, 19.9, 18.0. IR (neat): 2914, 2875, 1507, 1233, 1102, 1054, 1027, 822, 746 cm-1. MS (FAB): m/z = 538 [M]+. HRMS (FAB): m/z [M]+ calcd for C32H42O7: 538.2928; found: 538.2916.
4-Methoxyphenyl 4-O-Benzyl-2-O-methallyl-6-O-prenyl-β-d-galactopyranoside (10): 1H NMR (600 MHz, CDCl3): δ = 7.39 (d, J = 7.2 Hz, 2 H), 7.35 (dd, J = 7.2, 7.2 Hz, 2 H), 7.30 (t, J = 7.2 Hz, 1 H), 6.99 (d, J = 9.0 Hz, 2 H), 6.80 (d, J = 9.0 Hz, 2 H), 5.29 (t, J = 6.3 Hz, 1 H), 5.01 (s, 1 H), 4.89 (s, 1 H), 4.85 (d, J = 11.7 Hz, 1 H), 4.77 (d, J = 7.2 Hz, 1 H), 4.75 (d, J = 11.7 Hz, 1 H), 4.40 (d, J = 12.0 Hz, 1 H), 4.18 (d, J = 12.0 Hz, 1 H), 3.96 (dd, J = 7.2, 11.4 Hz, 1 H), 3.88-3.92 (m, 2 H), 3.76 (s, 3 H), 3.68-3.71 (m, 3 H), 3.56-3.63 (m, 2 H), 2.39-2.43 (br s, 1 H), 1.77 (s, 3 H), 1.72 (s, 3 H), 1.63 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 155.2, 151.5, 142.4, 138.5, 137.5, 128.4, 128.1, 127.8, 120.7, 118.3, 114.5, 112.5, 102.8, 79.6, 76.7, 75.5, 75.1, 74.1, 73.9, 68.2, 67.8, 55.6, 25.8, 19.7, 18.0. IR (neat): 3300-3600 (br), 2914, 2865, 1507, 1453, 1378, 1214, 1061, 826, 747 cm-1. MS (EI): m/z (%) = 498 [M]+ (0.45), 430 (0.36), 374 (1.9), 307 (5.6), 262 (2.6), 214 (5.3), 192 (15), 145 (15), 124 (100), 91 (94). HRMS (EI): m/z [M]+ calcd for C29H38O7: 498.2615; found: 498.2616.
4-Methoxyphenyl 3-O-Benzoyl-4-O-benzyl-2-O-methallyl-6-O-prenyl-β-d-galactopyranoside (11): 1H NMR (400 MHz, CDCl3): δ = 8.04 (dd, J = 1.2, 8.0 Hz, 2 H), 7.56 (tt, J = 1.2, 8.0 Hz, 1 H), 7.43 (dd, J = 8.0, 8.0 Hz, 2 H), 7.20-7.30 (m, 5 H), 7.03 (d, J = 9.2 Hz, 2 H), 6.81 (d, J = 9.2 Hz, 2 H), 5.24 (t, J = 6.8 Hz, 1 H), 5.24 (dd, J = 3.4, 10.2 Hz, 1 H), 4.92 (d, J = 7.6 Hz, 1 H), 4.89 (s, 1 H), 4.76 (s, 1 H), 4.72 (d, J = 11.8 Hz, 1 H), 4.58 (d, J = 11.8 Hz, 1 H), 4.31 (d, J = 11.6 Hz, 1 H), 4.13 (dd, J = <1.0, 3.4 Hz, 1 H), 4.12 (d, J = 11.6 Hz, 1 H), 4.08 (dd, J = 7.6, 10.2 Hz, 1 H), 3.95 (dd, J = 6.8, 11.4 Hz, 1 H), 3.88 (dd, J = 6.8, 11.4 Hz, 1 H), 3.82 (ddd, J = <1.0, 6.8, 6.8 Hz, 1 H), 3.76 (s, 3 H), 3.56-3.64 (m, 2 H), 1.72 (s, 3 H), 1.62 (s, 3 H), 1.58 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 165.6, 155.1, 151.4, 142.1, 137.9, 137.2, 133.1, 129.7, 129.7, 128.3, 128.1, 127.9, 127.5, 120.7, 118.4, 114.4, 112.6, 103.0, 77.0, 76.8, 75.7, 75.0, 74.3, 73.5, 67.9, 67.8, 55.6, 25.8, 19.6, 18.1. IR (neat): 2931, 2867, 1719, 1507, 1451, 1270, 1216, 1067, 903, 826, 749, 710 cm-1. MS (EI): m/z (%) = 602 [M]+ (1.3), 479 (8.7), 411 (21), 393 (5.7), 339 (6.2), 303 (4.6), 249 (20), 214 (15), 192 (18), 149 (22), 91 (100). HRMS (EI): m/z [M]+ calcd for C36H42O8: 602.2877; found: 602.2867.
4-Methoxyphenyl 3-O-Benzoyl-4-O-benzyl-6-O-prenyl-β-d-galactopyranoside (12): 1H NMR (400 MHz, CDCl3): δ = 8.05 (dd, J = 1.2, 8.0 Hz, 2 H), 7.56 (tt, J = 1.2, 8.0 Hz, 1 H), 7.42 (dd, J = 8.0, 8.0 Hz, 1 H), 7.20-7.30 (m, 5 H), 7.03 (d, J = 9.2 Hz, 2 H), 6.80 (d, J = 9.2 Hz, 2 H), 5.28 (t, J = 6.8 Hz, 1 H), 5.22 (dd, J = 3.2, 10.4 Hz, 1 H), 4.86 (d, J = 8.0 Hz, 1 H), 4.73 (d, J = 11.6 Hz, 1 H), 4.59 (d, J = 11.6 Hz, 1 H), 4.35 (dd, J = 8.0, 10.4 Hz, 1 H), 4.15 (dd, J = <1.0, 3.2 Hz, 1 H), 3.96 (dd, J = 7.2, 11.6 Hz, 1 H), 3.88 (dd, J = 7.2, 11.6 Hz, 1 H), 3.85 (ddd, J = <1.0, 7.2, 7.2 Hz, 1 H), 3.76 (s, 3 H), 3.56-3.65 (m, 2 H), 2.49-2.55 (br s, 1 H), 1.72 (s, 3 H), 1.62 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 166.0, 155.3, 151.1, 137.9, 137.3, 133.2, 129.8, 129.5, 128.4, 128.1, 127.8, 127.6, 120.6, 118.5, 114.4, 102.6, 75.8, 75.1, 74.2, 73.8, 69.7, 67.8, 67.8, 55.6, 25.8, 18.1. IR (neat): 3250-3600(br), 2912, 2836, 1717, 1507, 1451, 1273, 1216, 1065, 1027, 827, 748, 712 cm-1. MS (EI): m/z (%) = 548 [M]+ (0.34), 425 (8.5), 357 (34), 249 (4.0), 214 (11), 192 (13), 124 (100), 91 (97). HRMS (EI): m/z [M]+ calcd for C32H36O8: 548.2410; found: 548.2411.
4-Methoxyphenyl 2-O-Acetyl-3-O-benzoyl-4-O-benzyl-6-O-prenyl-β-d-galactopyranoside (13): 1H NMR (400 MHz, CDCl3): δ = 8.01 (d, J = 7.8 Hz, 2 H), 7.57 (t, J = 7.8 Hz, 1 H), 7.43 (dd, J = 7.8, 7.8 Hz, 2 H), 7.16-7.28 (m, 5 H), 6.98 (d, J = 9.0 Hz, 2 H), 6.80 (d, J = 9.0 Hz, 2 H), 5.79 (dd, J = 7.6, 10.4 Hz, 1 H), 5.29 (t, J = 6.8 Hz, 1 H), 5.21 (dd, J = 3.2, 10.4 Hz, 1 H), 4.98 (d, J = 7.6 Hz, 1 H), 4.71 (d, J = 11.6 Hz, 1 H), 4.56 (d, J = 11.6 Hz, 1 H), 4.20 (dd, J = <1.0, 3.2 Hz, 1 H), 3.96 (dd, J = 7.2, 11.6 Hz, 1 H), 3.89 (dd, J = 7.2, 11.6 Hz, 1 H), 3.87 (ddd, J = 1.0, 7.2, 7.2 Hz, 1 H), 3.76 (s, 3 H), 3.58-3.66 (m, 2 H), 1.98 (s, 3 H), 1.72 (s, 3 H), 1.63 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 169.3, 165.7, 155.3, 151.2, 137.7, 137.3, 133.4, 129.8, 129.0, 128.5, 128.1, 127.9, 127.5, 120.6, 118.5, 114.4, 100.8, 75.0, 74.5, 73.8, 73.8, 69.5, 67.8, 67.7, 55.6, 25.8, 20.8, 18.0. IR (neat): 2935, 2869, 1752, 1719, 1507, 1272, 1212, 1067, 1027, 828, 749, 714 cm-1. MS (EI): m/z (%) = 590 [M]+ (0.26), 467 (3.7), 399 (54), 339 (5.0), 277 (30), 249 (27), 175 (8.5), 124 (30), 91 (100). HRMS (EI): m/z [M]+ calcd for C34H38O9: 590.2516; found: 590.2518.
4-Methoxyphenyl 2-O-Acetyl-3-O-benzoyl-4-O-benzyl-β-d-galactopyranoside (14): 1H NMR (400 MHz, CDCl3): δ = 8.05 (dd, J = 1.2, 8.0 Hz, 2 H), 7.60 (tt, J = 1.2, 8.0 Hz, 1 H), 7.47 (dd, J = 8.0, 8.0 Hz, 2 H), 7.23-7.26 (m, 5 H), 6.96 (d, J = 9.2 Hz, 2 H), 6.81 (d, J = 9.2 Hz, 2 H), 5.81 (dd, J = 8.0, 10.4 Hz, 1 H), 5.22 (dd, J = 2.8, 10.4 Hz, 1 H), 5.01 (d, J = 8.0 Hz, 1 H), 4.76 (d, J = 11.6 Hz, 1 H), 4.48 (d, J = 11.6 Hz, 1 H), 4.13 (dd, J = <1.0, 2.8 Hz, 1 H), 3.84-3.90 (m, 1 H), 3.73-3.78 (m, 4 H), 3.55-3.62 (m, 1 H), 2.00 (s, 3 H), 1.58-1.65 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 169.4, 165.8, 155.3, 151.0, 137.1, 133.6, 129.8, 128.9, 128.6, 128.4, 128.3, 128.0, 118.3, 114.5, 100.5, 75.2, 72.7, 74.6, 73.1, 69.4, 61.6, 55.6, 20.8. IR (neat): 3350-3600 (br), 2935, 2883, 1752, 1719, 1507, 1272, 1212, 1069, 1027, 828, 749, 698 cm-1. MS (EI): m/z (%) = 522 [M]+ (0.35), 399 (22), 339 (3.0), 277 (9.5), 249 (18), 217 (3.5), 175 (8.5), 124 (25), 91 (100). HRMS (EI): m/z [M]+ calcd for C29H30O9: 522.189; found: 522.1868.
There are a few reports on carboxylic acids promoted Tsuji-Trost reaction.14a,15g,h In our systems, barbituric acids play dual roles as acids and nucleophiles.
18Less acidic acyclic 1,3-dicarbonyl compounds did not scavenge the allyl group of 2a in aqueous 1,4-dioxane at room temperature. This result is quite different from the aqueous biphasic Tsuji-Trost reaction developed by Shinokubo and Oshima.14b Our system does not require biphasic systems, water-soluble TPPTS [trisodium salt of tri(m-sulfophenyl)phosphine] as a ligand, and additional base.