Klin Monbl Augenheilkd 2008; 225(5): 361-365
DOI: 10.1055/s-2008-1027262
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Resting Energy Expenditure in Vasospastic Subjects and its Potential Relevance in Glaucoma

Grundumsatz bei Vasospastikern und die potenzielle Relevanz beim GlaukomS. Leuenberger1 , K. Gugleta1 , A. Kochkorov1 , G. Reinhard1 , K. Kräuchi2 , U. Keller3 , J. Flammer1 , S. Orgül1
  • 1University Eye Clinic, Basel, Switzerland (Chairman: Prof. Josef Flammer)
  • 2Centre for Chronobiology, Psychiatric University Clinic, Basel, Switzerland (Chairman: Franz Müller-Spahn)
  • 3Department of Endocrinology, Diabetology and Clinical Nutrition, Basel, Switzerland (Chairman: Prof. Dr. Ulrich Keller)
Further Information

Publication History

received: 26.8.2007

accepted: 31.10.2007

Publication Date:
05 May 2008 (online)

Zusammenfassung

Hintergrund: Der periphere Vasospasmus ist ein häufiges Symptom bei Normaldruckglaukompatienten. Wir untersuchten, ob der periphere Vasospasmus als ein Versuch, Wärmeverlust bei vermindertem Grundumsatz, zu verstehen ist. Patienten und Methoden: 20 gesunde, weibliche nicht rauchende Probandinnen wurden in diese Studie rekrutiert. Probandinnen wurden als vasospastisch (10 Probandinnen) eingeteilt, wenn sie eine eindeutige Anamnese von noch häufig kalten Händen hatten und als normale Probandinnen (10 Probanden), wenn eine solche Anamnese nicht vorhanden war. Die Probandenzahl wurde einer statistischen Wahrscheinlichkeit von 80 %, einen Unterschied von 20 % nachzuweisen, angepasst. Der Grundumsatz wurde durch indirekte Kaloriemetrie bestimmt und korrigiert für die fettfreie Masse, welche durch die bioelektrische Impendanzanalyse gemessen wurde. Ergebnisse: Der Grundumsatz war 1198 ± 155 kcal bei Vasospastikern und 1169 ± 122 kcal bei den Kontrollprobandinnen (Mann-Whitney-U-Test: p = 0,62). Die fettfreie Masse war 39,6 ± 3,3 kg bei Vasospastikern und 41,1 ± 2,3 kg bei Kontrollprobandinnen (Mann-Whitney-U-Test: p = 0,16). Der für die fettfreie Masse korrigierte Grundumsatz lag bei 30,2 ± 2,5 kcal/kg bei Vasospastikerinnen und 28,4 ± 2,3 kcal/kg bei Kontrollprobandinnen (Mann-Whitney-U-Test: p = 0,08). Schlussfolgerungen: Der periphere Vasospasmus scheint nicht eine sekundäre Antwort auf einen ungenügenden Grundumsatz darzustellen. Die Resultate dieser Studie deuten eher auf eine umgekehrte Tendenz hin, welche weiter untersucht werden sollte.

Abstract

Background: Peripheral vasospastic syndrome is frequently encountered in normal tension glaucoma patients. We tested the hypothesis as to whether peripheral vascular spastic tendency is due to an attempt to preserve body heat in subjects with reduced resting energy expenditure. Patients and Methods: Twenty healthy non-smoking female individuals were enrolled into the study. Subjects were classified as having vasospasm (10 subjects) if they related a clear history of frequent cold hands, and as normal subjects (10 subjects) if they denied such a history. Sample size calculation was based on a power of 80 % to find a difference of 20 %. Resting energy expenditure (REE) was assessed by indirect calorimetry and corrected for fat-free mass (FFM), which was assessed by bioelectric impedance analysis. Results: REE was 1198 ± 155 kilocalories (kcal) in vasospastics and 1169 ± 122 in controls (Mann-Whitney U-test: p = 0.62). FFM was 39.6 ± 3.3 kg in vasospastics and 41.1 ± 2.3 kg in controls (Mann-Whitney U-test: p = 0.16). REE adjusted for FFM was 30.2 ± 2.5 kcal/kg in vasospastics and 28.4 ± 2.3 kcal/kg in controls (Mann-Whitney U-test: p = 0.08). Conclusions: Peripheral vasospastic syndrome seems not to be a secondary response to insufficient resting energy expenditure. The results of the present study rather indicate an opposite tendency which deserves further investigation.

References

  • 1 Alam D S, Hulshof P J, Roordink D. et al . Validity and reproducibility of resting metabolic rate measurements in rural Bangladeshi women: comparison of measurements obtained by Medgemtrade mark and by Deltatractrade mark device.  Eur J Clin Nutr. 2005;  59 651-657
  • 2 Boulier A, Fricker J, Thomasset A L. et al . Fat-free mass estimation by the two-electrode impedance method.  Am J Clin Nutr. 1990;  52 581-585
  • 3 Brand M D, Chien L F, Ainscow E K. et al . The causes and functions of mitochondrial proton leak.  Biochim Biophys Acta. 1994;  1187 132-139
  • 4 Charkoudian N. Skin blood flow in adult human thermoregulation: how it works, when it does not, and why.  Mayo Clin Proc. 2003;  78 603-612
  • 5 Clapham J C, Arch J R, Chapman H. et al . Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean.  Nature. 2000;  406 415-418
  • 6 Erickson R S, Kirklin S K. Comparison of ear-based, bladder, oral, and axillary methods for core temperature measurement.  Critical Care Medicine. 1993;  21 1528-1534
  • 7 Flammer J, Orgul S, Costa V P. et al . The impact of ocular blood flow in glaucoma.  Prog Retin Eye Res. 2002;  21 359-393
  • 8 Flammer J, Pache M, Resink T. Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye.  Prog Retin Eye Res. 2001;  20 319-349
  • 9 Gallagher D, Belmonte D, Deurenberg P. et al . Organ-tissue mass measurement allows modeling of REE and metabolically active tissue mass.  Am J Physiol. 1998;  275 E249-E258
  • 10 Gasser P, Stumpfig D, Schotzau A. et al . Body mass index in glaucoma.  J Glaucoma. 1999;  8 8-11
  • 11 Girardin F, Orgul S, Erb C. et al . Relationship between corneal temperature and finger temperature.  Arch Ophthalmol. 1999;  117 166-169
  • 12 Greenstein D, Gupta N K, Martin P. et al . Impaired thermoregulation in Raynaud’s phenomenon.  Angiology. 1995;  46 603-611
  • 13 Harper M E, Ballantyne J S, Leach M. et al . Effects of thyroid hormones on oxidative phosphorylation.  Biochem Soc Trans. 1993;  21 (Pt 3) 785-792
  • 14 Harper M E, Brand M D. The quantitative contributions of mitochondrial proton leak and ATP turnover reactions to the changed respiration rates of hepatocytes from rats of different thyroid status.  J Biol Chem. 1993;  268 14 850-14 860
  • 15 Henry E, Newby D E, Webb D J. et al . Peripheral endothelial dysfunction in normal pressure glaucoma.  Investigative Ophthalmology and Visual Science. 1999;  40 1710-1714
  • 16 Hoerter J, Gonzalez-Barroso M D, Couplan E. et al . Mitochondrial uncoupling protein 1 expressed in the heart of transgenic mice protects against ischemic-reperfusion damage.  Circulation. 2004;  110 528-533
  • 17 Lanni A, Beneduce L, Lombardi A. et al . Expression of uncoupling protein-3 and mitochondrial activity in the transition from hypothyroid to hyperthyroid state in rat skeletal muscle.  FEBS Lett. 1999;  444 250-254
  • 18 Li B, Nolte L A, Ju J S. et al . Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice.  Nat Med. 2000;  6 1115-1120
  • 19 Luscher T F. Endothelin: key to coronary vasospasm?.  Circulation. 1991;  83 701-703
  • 20 Mahler F, Saner H, Wurbel H. et al . Local cooling test for clinical capillaroscopy in Raynaud’s phenomenon, unstable angina, and vasospastic visual disorders.  Vasa Zeitung der Gefasskrankheiten. 1989;  18 201-204
  • 21 Muller M J, Bosy-Westphal A, Kutzner D. et al . Metabolically active components of fat-free mass and resting energy expenditure in humans: recent lessons from imaging technologies.  Obes Rev. 2002;  3 113-122
  • 22 Nakamura M, Yoshida H, Arakawa N. et al . Endothelium-dependent vasodilator response is augmented in peripheral resistance vessels of patients with vasospastic angina.  Cardiology. 1999;  92 85-92
  • 23 Nicholls D G, Locke R M. Thermogenic mechanisms in brown fat.  Physiol Rev. 1984;  64 1-64
  • 24 Pache M, Krauchi K, Cajochen C. et al . Cold feet and prolonged sleep-onset latency in vasospastic syndrome.  The Lancet. 2001;  358 125-126
  • 25 Porter R K. Mitochondrial proton leak: a role for uncoupling proteins 2 and 3?.  Biochim Biophys Acta. 2001;  1504 120-127
  • 26 Porter R K, Brand M D. Body mass dependence of H+ leak in mitochondria and its relevance to metabolic rate.  Nature. 1993;  362 628-630
  • 27 Porter R K, Brand M D. Causes of differences in respiration rate of hepatocytes from mammals of different body mass.  Am J Physiol. 1995;  269 R1213-R1224
  • 28 Porter R K, Joyce O J, Farmer M K. et al . Indirect measurement of mitochondrial proton leak and its application.  Int J Obes Relat Metab Disord. 1999;  23 (Suppl 6) S12-S18
  • 29 Ravussin E, Rising R. Daily energy expenditure in humans: measurements in a respiratory chamber and by doubly labeled water.  Am J Physiol. 1991;  261 E 402-E 409
  • 30 Roberts M, Rivers T, Oliveria S. et al . Adrenoceptor and local modulator control of cutaneous blood flow in thermal stress.  Comp Biochem Physiol A Mol Integr Physiol. 2002;  131 485-496
  • 31 Rolfe D F, Brown G C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals.  Physiological Reviews. 1997;  77 731-758
  • 32 Schrauwen P, Hesselink M. Uncoupling protein 3 and physical activity: the role of uncoupling protein 3 in energy metabolism revisited.  Proc Nutr Soc. 2003;  62 635-643
  • 33 Simonini G, Pignone A, Generini S. et al . Emerging potentials for an antioxidant therapy as a new approach to the treatment of systemic sclerosis.  Toxicology. 2000;  155 1-15
  • 34 Skulachev V P. Uncoupling: new approaches to an old problem of bioenergetics.  Biochim Biophys Acta. 1998;  1363 100-124
  • 35 Speakman J R, Selman C. Physical activity and resting metabolic rate.  Proc Nutr Soc. 2003;  62 621-634
  • 36 Stuart J A, Brindle K M, Harper J A. et al . Mitochondrial proton leak and the uncoupling proteins.  J Bioenergetics Biomembranes. 1999;  31 517-525
  • 37 Tataranni P A, Ravussin E. Variability in metabolic rate: biological sites of regulation.  Int J Obes Relat Metab Disord. 1995;  19 (Suppl 4) S102-S106
  • 38 Teuchner B, Orgul S, Ulmer H. et al . Reduced thirst in patients with a vasospastic syndrome.  Acta Ophthalmol Scand. 2004;  82 738-740
  • 39 Weir J B. New methods for calculating metabolic rate with special reference to protein metabolism.  Jf Physiol. 1949;  109 1-12

Konstantin Gugleta, MD

University Eye Clinic Basel

Mittlere Straße 91

P. O. Box

4012 Basel

Switzerland

Phone: ++ 41/61/2 65 86 33

Fax: ++ 41/61/2 65-87 45

Email: gugletak@uhbs.ch