References and Notes
1
Mann J.
In Secondary Metabolism
Oxford University Press;
Oxford:
1991.
Chap. 3.
p.417
2 For a review on the application of isotopic labeling in protein-structure determination, see: Lian L.-Y.
Middleton DA.
Prog. Nucl. Magn. Reson. Spectrosc.
2001,
39:
171
For example, see:
3a
Baldwin JE.
Adlington RM.
Marquess DG.
Pitt AR.
Porter MJ.
Russell AT.
Tetrahedron
1996,
52:
2515
3b
Church NJ.
Young DW.
J. Chem. Soc., Perkin Trans. 1
1998,
52:
1475
3c
Pirrung MC.
Acc. Chem. Res.
1999,
32:
711
4a
Namy J.-L.
Girard P.
Kagan HB.
New J. Chem.
1977,
1:
5
4b
Girard P.
Namy J.-L.
Kagan HB.
J. Am. Chem. Soc.
1980,
102:
2693
5a
Molander GA.
Harris CR.
Chem. Rev.
1996,
96:
307
5b
Molander GA.
Harris CR.
Tetrahedron
1998,
54:
3321
5c
Krief A.
Laval AM.
Chem. Rev.
1999,
99:
745
5d
Steel PG.
J. Chem. Soc., Perkin Trans. 1
2001,
2727
5e
Kagan HB.
Tetrahedron
2003,
59:
10351
5f
Concellón JM.
Rodríguez-Solla H.
Chem. Soc. Rev.
2004,
33:
599
6a
Molander GA.
In Organic Reactions
Vol. 46:
Paquette LA.
John Wiley;
New York:
1994.
p.211
6b
Dahlén A.
Hilmersson G.
Eur. J. Inorg. Chem.
2004,
3393
6c
Concellón JM.
Rodríguez-Solla H.
Eur. J. Org. Chem.
2006,
1613
7
Concellón JM.
Rodríguez-Solla H.
Chem. Eur. J.
2001,
7:
4266
8
Concellón JM.
Rodríguez-Solla H.
Chem. Eur. J.
2002,
8:
4493
9
Concellón JM.
Bernad PL.
Rodríguez-Solla H.
Angew. Chem. Int. Ed.
2001,
40:
3897
10
Concellón JM.
Bardales E.
Gómez C.
Tetrahedron Lett.
2003,
44:
5323
11
Concellón JM.
Rodríguez-Solla H.
Concellón C.
Tetrahedron Lett.
2004,
45:
2129
12a
Evans DA.
Michael FE.
Tedrow JS.
Campos KR.
J. Am. Chem. Soc.
2003,
125:
3534
12b
Daumas M.
Vo-Quang L.
Le Goffic F.
Synth. Commun.
1990,
20:
3395
12c
Schmidt U.
Lieberknecht A.
Wild J.
Synthesis
1984,
20:
53
13 The solution of SmI2 in THF was rapidly obtained by reaction of diiodomethane with samarium powder in the presence of sonic waves: Concellón JM.
Rodríguez-Solla H.
Bardales E.
Huerta M.
Eur. J. Org. Chem.
2003,
1775
14
General Procedure for Compound 6a
Under nitrogen, a solution of SmI2 (1.2 mmol) in THF (15 mL) was added dropwise to a stirred solution of the starting material 5a in D2O (2 mL) and THF (2 mL) at r.t. The reaction mixture was stirred for 30 min and then treated with 0.1 M aq HCl (5 mL). Standard workup afforded the crude 2,3-dideuterio-2-amino ester 6a, which was purified by flash column chromatography on SiO2 (hexane-EtOAc, 5:1):
Methyl 2-Acetylamino-2,3-dideuteriodecanoate (6a)
R
f
= 0.26 (hexane-EtOAc, 1:1). 1H NMR (300 MHz, CDCl3): d = 6.16 (br s, 1 H), 3.70 (s, 3 H), 1.99 (s, 3 H), 1.65-1.51 (m, 1 H), 1.33-1.10 (m, 12 H), 0.84 (t, J = 6.7 Hz, 3 H). 13C NMR (75 MHz, CDCl3): d = 173.2 (C), 169.8 (C), 52.1 (CH3), 51.7 (t, J = 21.8 Hz, CD), 31.8 (t, J = 19.6 Hz, CHD), 31.6 (CH2), 29.2 (CH2), 29.0 (2 ¥ CH2), 24.9 (CH2), 22.9 (CH3), 22.5 (CH2), 13.9 (CH3). MS (70 eV): m/z (%) = 245 (5) [M+], 186 (55), 144 (100). HRMS: m/z calcd for C13H23D2NO3: 245.1960; found: 245.1944. IR (neat): 3263, 3063, 2922, 1742, 1652, 1374 cm-1.
15 In the mass spectra (MS and HRMS) of deuterated compounds 6a,c,e,g, the [M]+ peaks of the corresponding nondeuterated compounds are either absent or very weak, indicating that these species are present to an extent of <2%.
16 However, the deuteration of 8 to give 9 produced by D2O could not be rejected.
b-Amino alkanols are important building blocks and have been used to prepare a large number of biologically active natural and synthetic compounds, including unnatural amino acids:
17a
Corey EJ.
Zhang F.
Angew. Chem. Int. Ed.
1999,
38:
1931
17b
O’Brien P.
Angew. Chem. Int. Ed.
1999,
38:
326
17c
Johannes CW.
Visser MS.
Weatherhead GS.
Hoveyda AH.
J. Am. Chem. Soc.
1998,
120:
8340
17d
Chang BL.
Ganesan A.
Bioorg. Med. Chem. Lett.
1997,
7:
1511
17e
Li G.
Chang HT.
Sharpless KB.
Angew. Chem. Int. Ed.
1996,
35:
451
17f
Rogers GA.
Parsons SM.
Anderson DS.
Nilson LM.
Bahr BA.
Kornreich WD.
Kaufman R.
Jacobs RS.
Kirtman B.
J. Med. Chem.
1989,
32:
1217
18
General Procedure for the Synthesis of Compound 11e
2-Acetylamino-3-cyclohexyl-2,3-dideuteriopropanoic acid methyl ester (6e, 100 mg, 0.43 mmol) was refluxed in concd HCl for 12 h. Then, aq HCl was evaporated at low pressure and 2-amino-3-cyclohexyl-2,3-dideuteriopropanoic acid hydrochloride was recovered as a colorless solid; quant. yield. 1H NMR (300 MHz, D2O): d = 1.68 (d, J = 7.9 Hz, 1 H), 1.63-1.40 (m, 5 H), 1.35-1.21 (m, 1 H), 1.10-1.01 (m, 3 H), 0.98-0.72 (m, 2 H). 13C NMR (75 MHz, D2O): d = 175.3 (C), 52.8 (CD, J = 20.5 Hz), 39.3 (CHD, J = 19.0 Hz), 35.2 (CH), 34.9 (CH2), 34.1 (CH2), 28.1 (CH2), 27.8 (CH2), 27.7 (CH2). IR (neat): = 3425, 2926, 1652, 1265 cm-1
.
General Procedure for the Synthesis of Compound 12e
To a solution of 2-acetylamino-3-cyclohexyl-2,3-dideuteriopropanoic acid methyl ester (6e, 57 mg, 0.25 mmol) in THF (5 mL), a 1.0 M in THF solution of LiAlH4 (0.28 mL, 0.28 mmol) was added dropwise at 0 °C under nitrogen. The resulting solution was stirred at r.t. for 12 h, then quenched with ice water and filtered through a pad of Celite®. The aqueous layer was extracted with Et2O, dried over Na2SO4 and finally the solvents were removed under vacuum, to afford 2-acetylamino-3-cyclohexyl-2,3-dideuteriopropan-1-ol as a white solid; 83% yield. 1H NMR (300 MHz, CDCl3): d = 5.63 (br s, 1 H), 3.66 (d, J = 11.1 Hz, 1 H), 3.50 (d, J = 11.1 Hz, 1 H), 2.01 (s, 3 H), 1.79-0.84 (m, 12 H). 13C NMR (75 MHz, CDCl3): d = 171.1 (C), 66.3 (CH2), 49.1 (t, J = 20.0 Hz, CD), 38.2 (t, J = 19.5 Hz, CHD), 34.1 (CH), 33.6 (CH2), 32.8 (CH2), 26.3 (CH2), 26.1 (CH2), 26.0 (CH2), 23.4 (CH3). IR (neat): 1653, 1636, 1558, 1540 cm-1.