Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2008(4): 0627-0648
DOI: 10.1055/s-2008-1032160
DOI: 10.1055/s-2008-1032160
FEATUREARTICLE
© Georg Thieme Verlag Stuttgart · New York
Titanium-Mediated Fragment Union Processes in Complex Molecule Synthesis: Development of a Branched Reaction Pathway of High Step Economy for the Synthesis of Complex and Diverse Polyketides
Further Information
Received
19 October 2007
Publication Date:
08 February 2008 (online)
Publication History
Publication Date:
08 February 2008 (online)
Abstract
We describe a synthetic pathway to structurally complex and diverse polyketides based, in part, on regio- and stereoselective titanium-mediated coupling reactions. The sequences described allow for rapid assembly of polyketide-inspired architecture while providing significant flexibility for the establishment of diverse stereochemical relationships and substitution patterns along the carbon backbone (including stereodefined alkenes and 1,3-dienes, saturated and unsaturated lactones, hemiketals, α,β-unsaturated carbonyls, and spiroketals).
Keywords
polyketides - diversity-oriented synthesis - alkyne complexes - titanium - cross-coupling - regioselectivity
-
1a
Newman DJ.Cragg GM.Snader KM. Nat. Prod. Rep. 2000, 17: 215 -
1b
Newman DJ.Cragg GM.Snader KM. J. Nat. Prod. 2003, 66: 1022 -
1c
Mann J. Nat. Rev. Cancer 2002, 2: 143 -
1d
Macrolide Antibiotics. Chemistry, Biology, and Practice
2nd ed.:
Omura S. Academic Press; San Diego: 2002. p.635 - 2 For a recent review of the chemistry and biology of the polyketides, see:
Polyketides, Biosynthesis, Biological Activity, and Genetic Engineering
Baerson SR. American Chemical Society; Washington DC: 2006. p.296 -
3a
Paterson I.Scott JP. Tetrahedron Lett. 1997, 38: 7445 -
3b
Taylor RE.Chen Y.Galvin GM.Pabba PK. Org. Biomol. Chem. 2004, 2: 127 -
3c
Taylor RE.Chen Y.Beatty A. J. Am. Chem. Soc. 2003, 125: 26 - 4
Hoffmann RW. Angew. Chem. Int. Ed. 2000, 39: 2054 - 5
Cane DE.Walsh CT. Chem. Biol. 1999, 6: 319 -
6a
Staunton J.Weissman KJ. Nat. Prod. Rep. 2001, 18: 380 -
6b
Gonzalez-Lergier J.Broadbelt LJ.Hatzimanikatis V. J. Am. Chem. Soc. 2005, 127: 9930 - For some recent reviews on this subject see:
-
7a
Thibodeaux CJ.Melaçon CE.Liu HW. Nature 2007, 446: 1008 -
7b
Hili R.Yudin AK. Nat. Chem. Biol. 2006, 2: 284 -
7c
Tamura K.Alexander RW. Cell. Mol. Life Sci. 2004, 61: 1317 - 8 For an interesting example of a synthetic pathway utilizing this strategy see:
Spiegel DA.Schroeder FC.Duvall JR.Schreiber SL. J. Am. Chem. Soc. 2006, 128: 14766 -
9a
Schetter B.Mahrwald R. Angew. Chem. Int. Ed. 2006, 45: 7506 -
9b
Bode S.Wolberg M.Muller M. Synthesis 2006, 557 -
9c
Paterson I.Cowden CJ.Wallace DJ. In Modern Carbonyl ChemistryOtera J. Wiley-VCH; Weinheim: 2000. p.249 -
9d
Yeung KS.Paterson I. Chem. Rev. 2005, 105: 4237 -
9e
Chemler SR.Roush WR. In Modern Carbonyl ChemistryOtera J. Wiley-VCH; Weinheim: 2000. p.403 -
10a
Paterson I.Scott JP. Tetrahedron Lett. 1997, 38: 7445 -
10b
Paterson I.Scott JP. Tetrahedron Lett. 1997, 38: 7441 -
10c
Gennari C.Ceccarelli S.Piarulli U.Aboutayab K.Donghi M.Paterson I. Tetrahedron 1998, 54: 14999 -
10d
Scott JP.Paterson I. J. Chem. Soc., Perkin Trans. 1 1999, 1003 -
10e
Paterson I.Donghi M.Gerlach K. Angew. Chem. Int. Ed. 2000, 39: 3315 -
10f
Paterson I.Temal-Laib T. Org. Lett. 2002, 4: 2473 -
10g
Panek JS.Zhu B. J. Am. Chem. Soc. 1997, 119: 12022 -
10h
Reggelin M.Brenig V. Tetrahedron Lett. 1996, 37: 6851 -
10i
Reggelin M.Brenig V.Welcker R. Tetrahedron Lett. 1998, 39: 4801 -
10j
Hanessian S.Ma J.Wang W. Tetrahedron Lett. 1999, 40: 4631 -
10k
Paterson I.Gottschling D.Menche D. Chem. Commun. 2005, 3568 -
10l
Kesavan S.Su Q.Shao J.Porco JAJ.Panek JS. Org. Lett. 2005, 7: 4435 -
10m
Barun O.Sommer S.Waldmann H. Angew. Chem. Int. Ed. 2004, 43: 3195 -
10n
Sommer S.Waldmann H. Chem. Commun. 2005, 5684 -
10o
Gierasch TM.Chytil M.Didiuk MT.Park JY.Urban JJ.Nolan SP.Verdine GL. Org. Lett. 2000, 2: 3999 -
10p
Harrison BA.Verdine GL. Org. Lett. 2001, 3: 2157 -
10q
Bode JW.Fraefel N.Muri D.Carreira EM. Angew. Chem. Int. Ed. 2001, 40: 2082 -
10r
Arjona O.Menchaca R.Plumet J. J. Org. Chem. 2001, 66: 2400 -
10s
Hein JE.Hultin PG. Synlett 2003, 635 -
10t
Shang S.Iwadare H.Macks DE.Ambrosini LM.Tan DS. Org. Lett. 2007, 9: 1895 -
11a
Wender PA.Croatt MP.Witulski B. Tetrahedron 2006, 62: 7505 -
11b
Wender PA.Bi FC.Gamber GG.Gosselin F.Hubbard RD.Scanio MJC.Sun R.Williams TJ.Zhang L. Pure Appl. Chem. 2002, 74: 25 -
11c
Wender PA.Handy ST.Wright DL. Chem. Ind. (London) 1997, 765 -
11d
Wender PA.Miller BL. In Organic Synthesis: Theory and Applications Vol. 2:Hudlicky T. JAI Press; Greenwich: 1993. p.27 -
12a
Cortes J.Haydock SF.Roberts GA.Bevitt DJ.Leadlay PF. Nature 1990, 348: 176 -
12b
O’Hagan D. Nat. Prod. Rep. 1995, 12: 1 - For reviews of aldol and allylmetal processes see:
-
13a
Paterson I.Cowden CJ.Wallace DJ. In Modern Carbonyl ChemistryOtera J. Wiley-VCH; Weinheim: 2000. p.249 -
13b
Chemler SR.Roush WR. In Modern Carbonyl ChemistryOtera J. Wiley-VCH; Weinheim: 2000. p.403 -
13c
Carreira EM. In Modern Carbonyl ChemistryOtera J. Wiley-VCH; Weinheim: 2000. p.227 -
13d
Denmark SE.Almstead NG. In Modern Carbonyl ChemistryOtera J. Wiley-VCH; Weinheim: 2000. p.299 - For an impressive pathway to complex polyketides that drastically alleviates the burden of protecting group and oxidation state manipulations en route to polyketide targets see:
-
14a
Park PK.O’Malley SJ.Schmidt DR.Leighton JL. J. Am. Chem. Soc. 2006, 128: 2796 -
14b
Zacuto MJ.Leighton JL. Org. Lett. 2005, 7: 5525 -
14c
Wang X.Meng Q.Perl NR.Xu Y.Leighton JL. J. Am. Chem. Soc. 2005, 127: 12806 -
14d
Schmidt DR.Park PK.Leighton JL. Org. Lett. 2003, 5: 3535 -
14e
Zacuto MJ.O’Malley SJ.Leighton JL. Tetrahedron 2003, 59: 8889 -
14f
Wang X.Meng Q.Nation AJ.Leighton JL. J. Am. Chem. Soc. 2002, 124: 10672 -
15a
Roush WR. J. Org. Chem. 1991, 56: 4151 -
15b
Evans DA.Yang MG.Dart MJ.Duffy JL. Tetrahedron Lett. 1996, 37: 1957 -
15c
Evans DA.Côté B.Coleman PJ.Connell P. J. Am. Chem. Soc. 2003, 125: 10893 -
15d
Evans DA.Siska SJ.Cee VJ. Angew. Chem. Int. Ed. 2003, 42: 1761 -
15e
Paterson I.Gibson KR.Oballa RM. Tetrahedron Lett. 1996, 37: 8585 -
15f
Roush WR.Bannister TD.Wendt MD. Tetrahedron Lett. 1993, 34: 8387 -
15g
Gustin DJ.VanNieuwenhze MS.Roush WR. Tetrahedron Lett. 1995, 36: 3443 -
15h
Gustin DJ.VanNieuwenhze MS.Roush WR. Tetrahedron Lett. 1995, 36: 3447 -
15i
Roush WR.Dilley GJ. Tetrahedron Lett. 1999, 40: 4955 -
15j
Roush WR.Lane GC. Org. Lett. 1999, 1: 95 -
15k
Roush WR.Bannister TD.Wendt MD.Jablonowski JA.Scheidt KA. J. Org. Chem. 2002, 67: 4275 -
15l
Braun M. Angew. Chem., Int. Ed. Engl. 1987, 26: 24 -
15m
Paterson I. Pure Appl. Chem. 1992, 64: 1821 -
16a
Paterson I.Scott JP. Tetrahedron Lett. 1997, 38: 7445 -
16b
Paterson I.Scott JP. Tetrahedron Lett. 1997, 38: 7441 -
16c
Gennari C.Ceccarelli S.Piarulli U.Aboutayab K.Donghi M.Paterson I. Tetrahedron 1998, 54: 14999 -
16d
Scott JP.Paterson I. J. Chem. Soc., Perkin Trans. 1 1999, 1003 -
16e
Paterson I.Donghi M.Gerlach K. Angew. Chem. Int. Ed. 2000, 39: 3315 -
16f
Paterson I.Temal-Laib T. Org. Lett. 2002, 4: 2473 -
16g
Paterson I.Gottschling D.Menche D. Chem. Commun. 2005, 3568 -
17a
Schreiber SL. Science 2000, 287: 1964 -
17b
Shang S.Tan DS. Curr. Opin. Chem. Biol. 2005, 9: 248 - 18
Bahadoor AB.Flyer A.Micalizio GC. J. Am. Chem. Soc. 2005, 127: 3694 -
19a
Marshall JA.Adams ND. J. Org. Chem. 1998, 63: 3812 -
19b
Marshall JA.Maxson K. J. Org. Chem. 2000, 65: 630 -
20a
Bahadoor AB.Flyer A.Micalizio GC. J. Am. Chem. Soc. 2005, 127: 3694 -
20b
Bahadoor AB.Micalizio GC. Org. Lett. 2006, 8: 1181 - 21
Shimp HL.Micalizio GC. Org. Lett. 2005, 7: 5111 - 22
Willis MC.Randell-Sly HE.Woodward RL.McNally SJ.Currie GS. J. Org. Chem. 2006, 71: 5291 - 23
McLaughlin M.Takahashi M.Micalizio GC. Angew. Chem. Int. Ed. 2007, 46: 3912 - 24
Shimp HL.Micalizio GC. Chem. Commun. 2007, 4531 - 25
Reichard HA.Micalizio GC. Angew. Chem. Int. Ed. 2007, 46: 1440 - 27
Kolb HC.VanNieuwenhze MS.Sharpless KB. Chem. Rev. 1994, 94: 2483 - 28
Blanchette MA.Choy W.Davis JT.Essanfeld AP.Masamune S.Roush WR.Sakai T. Tetrahedron Lett. 1984, 25: 2183 - 29
Hudlicky T.Sinai-Zingde G.Natchus MG. Tetrahedron Lett. 1987, 28: 5287 - 30
Mahoney WS.Brestensky DM.Stryker JM. J. Am. Chem. Soc. 1988, 110: 291 - 31
Still WC.Gennari C. Tetrahedron Lett. 1983, 24: 4405 - 32
Evans DA.Morrissey MM.Dow RL. Tetrahedron Lett. 1985, 26: 6005 - 33
Tsai DJS.Matteson DS. Tetrahedron Lett. 1981, 22: 2751 - 34
Roush WR.Ando K.Powers DB.Palkowitz AD.Halterman RL. J. Am. Chem. Soc. 1990, 112: 6339 -
35a
Kittendorf JD.Sherman DH. Curr. Opin. Biotechnol. 2006, 17: 597 -
35b
Reynolds KA. Proc. Natl. Acad. Sci. U.S.A. 1998, 95: 12744
References
See references 19a, 19b, 20a, and 20b.