References and Notes
For excellent reviews on heteroatom-substituted oxyallyl cations, see:
1a
Harmata M.
Adv. Synth. Catal.
2006,
348:
2297
1b
Harmata M.
Recent Res. Dev. Org. Chem.
1997,
1:
523
For general reviews, see:
2a
Hartung IV.
Hoffmann HMR.
Angew. Chem. Int. Ed.
2004,
43:
1934
2b
Harmata M.
Rashatasakhon P.
Tetrahedron
2003,
59:
2371
2c
Harmata M.
Acc. Chem. Res.
2001,
34:
595
Also see:
2d
Davies HML. In Advances in Cycloaddition
Vol. 5:
Harmata M.
JAI;
Greenwich:
1998.
p.119
2e
West FG. In Advances in Cycloaddition
Vol. 4:
Lautens M.
JAI;
Greenwich:
1997.
p.1
2f
Rigby JH.
Pigge FC.
Org. React.
1997,
51:
351
2g
Harmata M.
Tetrahedron
1997,
53:
6235
For some examples of other heteroatom-substituted oxyallyl cations, see:
3a
Harmata M.
Wacharasindhu S.
Org. Lett.
2005,
7:
2563
3b
Sáez JA.
Arnó M.
Domingo LR.
Tetrahedron
2005,
61:
7538
3c
Harmata M.
Kahraman M.
Adenu G.
Barnes CL.
Heterocycles
2004,
62:
583
3d
Sáez JA.
Arnó M.
Domingo LR.
Org. Lett.
2003,
5:
4117
3e
Funk RL.
Aungst RA.
Org. Lett.
2001,
3:
3553
3f
Harmata M.
Sharma U.
Org. Lett.
2000,
2:
2703
3g
Lee K.
Cha JK.
Org. Lett.
1999,
1:
523
3h
Masuya K.
Domon K.
Tanino K.
Kuwajima I.
J. Am. Chem. Soc.
1998,
120:
1724
3i
Harmata M.
Elomari S.
Barnes CJ.
J. Am. Chem. Soc.
1996,
118:
2860 ; and references cited within
For recent stereoselective attempts, see:
4a
Davies HML.
Dai X.
J. Am. Chem. Soc.
2004,
126:
2693
4b
Prié G.
Prévost N.
Twin H.
Fernandes SA.
Hayes JF.
Shipman M.
Angew. Chem. Int. Ed.
2004,
43:
6517
4c
Grainger RS.
Owoare RB.
Tisselli P.
Steed JW.
J. Org. Chem.
2003,
68:
7899
4d Montanã A. M., Grima P. M.; Tetrahedron; 2002, 58: 4769
4e
Beck H.
Stark CBW.
Hoffman HMR.
Org. Lett.
2000,
2:
883 ; and reference 11 cited within
4f
Harmata M.
Rashatasakhon P.
Synlett
2000,
1419
4g
Cho SY.
Lee JC.
Cha JK.
J. Org. Chem.
1999,
64:
3394
4h
Harmata M.
Jones DE.
Kahraman M.
Sharma U.
Barnes CL.
Tetrahedron Lett.
1999,
40:
1831
4i
Kende AS.
Huang H.
Tetrahedron Lett.
1997,
38:
3353
4j
Harmata M.
Jones DE.
J. Org. Chem.
1997,
62:
4885
5
Harmata M.
Ghosh SK.
Hong X.
Wacharasindu S.
Kirchhoefer P.
J. Am. Chem. Soc.
2003,
125:
2058
6 For a recent account that constitutes an enantioselective formal [4+3] cycloaddition, see: Dai X.
Davies HML.
Adv. Synth. Catal.
2006,
348:
2449
7 For a compendium on the chemistry of allenes, see: Krause N.
Hashmi ASK.
Modern Allene Chemistry
Vol. 1 and 2:
Wiley-VCH;
Weinheim:
2004.
For reviews on the chemistry and synthesis of allenamides, see:
8a
Hsung RP.
Wei L.-L.
Xiong H.
Acc. Chem. Res.
2003,
36:
773
8b
Tracey MR.
Hsung RP.
Antoline J.
Kurtz KCM.
Shen L.
Slafer BW.
Zhang Y. In Science of Synthesis, Houben-Weyl Methods of Molecular Transformations
Weinreb SM.
Thieme;
Stuttgart:
2005.
Chap. 21.4.
For recent reports on the allenamide chemistry, see:
9a
Watanabe T.
Oishi S.
Fuji N.
Ohno H.
Org. Lett.
2007,
9
in press
9b
Hyland CJT.
Hegedus LS.
J. Org. Chem.
2006,
71:
8658
9c
Parthasarathy K.
Jeganmohan M.
Cheng C.-H.
Org. Lett.
2006,
8:
621
9d
Fenández I.
Monterde MI.
Plumet J.
Tetrahedron Lett.
2005,
46:
6029
9e
de los Rios C.
Hegedus LS.
J. Org. Chem.
2005,
70:
6541
9f
Alouane N.
Bernaud F.
Marrot J.
Vrancken E.
Mangeney P.
Org. Lett.
2005,
7:
5797
9g
Hyland CJT.
Hegedus LS.
J. Org. Chem.
2005,
70:
8628
For our recent efforts, see:
10a
Song Z.
Hsung RP.
Lu T.
Lohse AG.
J. Org. Chem.
2007,
72: in press
10b
Song Z.
Hsung RP.
Org. Lett.
2007,
9:
2199
10c
Huang J.
Ianni JC.
Antoline JE.
Hsung RP.
Kozlowski MC.
Org. Lett.
2006,
8:
1565
10d
Berry CR.
Hsung RP.
Antoline JE.
Petersen ME.
Rameshkumar C.
Nielson JA.
J. Org. Chem.
2005,
70:
4038
10e
Shen L.
Hsung RP.
Zhang Y.
Antoline JE.
Zhang X.
Org. Lett.
2005,
7:
3081
For leading examples of nitrogen-stabilized oxyallyl cations in [4+3] cycloadditions, see:
11a
MaGee DI.
Godineau E.
Thornton PD.
Walters MA.
Sponholtz DJ.
Eur. J. Org. Chem.
2006,
3667
11b
Myers AG.
Barbay JK.
Org. Lett.
2001,
3:
425
11c
Sung MJ.
Lee HI.
Chong Y.
Cha JK.
Org. Lett.
1999,
1:
2017
11d
Walters MA.
Arcand HR.
J. Org. Chem.
1996,
61:
1478
11e
Walters MA.
Arcand HR.
Lawrie DJ.
Tetrahedron Lett.
1995,
36:
23
11f
Dennis N.
Ibrahim B.
Katritzky AR.
J. Chem. Soc., Perkin Trans. 1
1976,
2307
12
Rameshkumar C.
Xiong H.
Tracey MR.
Berry CR.
Yao LJ.
Hsung RP.
J. Org. Chem.
2002,
67:
1339
13 For our asymmetric [4+3] cycloaddition, see: Xiong H.
Hsung RP.
Berry CR.
Rameshkumar C.
J. Am. Chem. Soc.
2001,
123:
7174
14
Antoline JE.
Hsung RP.
Huang J.
Song Z.
Li G.
Org. Lett.
2007,
9:
1275
15
Xiong H.
Huang J.
Ghosh SK.
Hsung RP.
J. Am. Chem. Soc.
2003,
125:
12694
Rameshkumar C.
Hsung RP.
Angew. Chem. Int. Ed.
2004,
43:
615
For a very recent account on intramolecular [4+3] cycloadditions of allenyl dienes employing PtCl2 as a catalyst, see:
16b
Trillo B.
López F.
Gulías M.
Castedo L.
Mascareñas LJ.
Angew. Chem. Int. Ed.
2008,
47:
951
For a review, see:
17a
Hoffmann HMR.
Angew. Chem., Int. Ed. Engl.
1973,
12:
819 ; Angew. Chem. 1973, 85, 877
17b Also see: Hoffmann HMR.
Joy DR.
J. Chem. Soc. B
1968,
1182
18
Huang J.
Hsung RP.
J. Am. Chem. Soc.
2005,
127:
50
19
General Procedure for the [4+3] Cycloaddition
To a solution of the allenamide in CH2Cl2 [0.10 M] was added the appropriate furan (3.0-6.0 equiv) and 4 Å pulverized MS (0.50 g). The reaction solution was cooled to -78 °C, and ZnCl2 (2.0 equiv, 1.0 M in Et2O) was added. Then, DMDO in acetone (4.0-6.0 equiv) was added as a chilled solution (at -78 °C) via syringe pump over 3-4 h. The syringe pump was cooled by dry ice the entire addition time. After the addition the reaction mixture was stirred for another 14 h. The reaction was then quenched with sat. aq NaHCO3, filtered through Celite®, concentrated in vacuo, partitioned with CH2Cl2, extracted [4 × 20 mL], dried over Na2SO4, and concentrated in vacuo. The crude residue was purified via silica gel column chromatography (gradient eluent: 10-75% EtOAc in hexane).
20 In our intermolecular nitrogen stabilized oxyallyl cation [4+3] cycloadditions, for electron-rich furans, while some of the low-yielding reactions are due to decomposition of the epoxidized starting allenamide, most are due to noticeable competing epoxidation of the respective electron-rich furan. This issue can be circumvented using 6-10 equiv of furan, leading to higher yields (see references 13 and 18). For electron-deficient furans, the competing furan-epoxidation is not a problem, and thus, we can employ a much lower loading. However, we have found that reactions with electron-deficient furans such as those shown in this study are overall slower and more sluggish. This is consistent with the fact that oxyallyl cation based [4+3] cycloadditions proceed in an electrophilic manner.
21
Analytical Data
Compound 4b: R
f
= 0.10 (50% EtOAc in hexane); [α]D
23
-86.2 (c 0.10, CH2Cl2). 1H NMR (500 MHz, CDCl3): δ = 2.53 (d, 1 H, J = 16.2 Hz), 2.83 (dd, 1 H, J = 5.4, 16.0 Hz), 3.67 (s, 3 H), 3.96 (s, 1 H), 4.18 (t, 1 H, J = 8.1 Hz), 4.66 (t, 1 H, J = 8.0 Hz), 4.82 (t, 1 H, J = 9.2 Hz), 5.06 (dd, 1 H, J = 5.2, 1.6 Hz), 6.28 (dd, 1 H, J = 6.0, 2.0 Hz), 7.15 (d, 1 H, J = 6.4 Hz), 7.28-7.46 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 14.5, 21.3, 45.4, 53.1, 64.4, 68.6, 70.6, 79.1, 89.3, 128.4, 129.5, 129.4, 140.2, 167.4, 171.4, 199.4 cm-1. IR (thin film): 3280 (w), 2911 (w), 1766 (s) cm-1. MS (APCI): m/e (%) = 344.1 (90) [M + H]+.
Compound 4b-D: R
f
= 0.10 (50% EtOAc in hexane); [α]D
23 -132.6 (c 0.30, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 2.52 (d, 1 H, J = 16.8 Hz), 2.84 (dd, 1 H, J = 5.2, 16.4 Hz), 3.65 (s, 3 H), 3.96 (s, 0.35 H), 4.20 (dd, 1 H, J = 8.8, 6.8 Hz), 4.74 (t, 1 H, J = 8.4 Hz), 4.96 (t, 1 H, J = 7.6 Hz), 5.05 (m, 1 H) 6.28 (dd, 1 H, J = 1.6, 5.6 Hz), 7.11 (d, 1 H, J = 6.0 Hz), 7.23-7.44 (m, 5 H). 13C NMR (125 MHz, CDCl3): δ = 29.5, 45.4, 53.0, 64.3, 70.5, 79.1, 89.2, 128.4, 129.5, 129.9, 132.6, 133.6, 136.4, 158.3, 167.3, 199.4. IR (thin film): 3300 (w), 2910 (w), 1748 (s) cm-1. MS (APCI): m/e (%) = 345.1 (60) [M + H]+.
Compound 5b: R
f
= 0.23 (50% EtOAc in hexane); [α]D
23
-72.8 (c 6.4, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 2.51 (d, 1 H, J = 16.0 Hz), 2.84 (dd, 1 H, J = 16.4, 6.0 Hz), 4.00 (s, 1 H), 4.17 (t, 1 H, J = 8.8 Hz), 4.39 (ddt, 1 H, J = 13.2, 5.6, 1.3 Hz), 4.66 (t, 1 H J = 8.4 Hz), 4.69 (m, 1 H), 4.83 (t, 1 H, J = 8.4 Hz), 5.07 (dd, 1 H, J = 5.6, 1.9 Hz), 5.27 (ddd, 1 H, J = 10.4, 2.5, 1.3 Hz) 5.34 (ddd, 1 H, J = 17.2, 3.0, 1.4 Hz) 5.84 (ddt, 1 H, J = 6.0, 11.6, 16.4), 6.28 (dd, 1 H, J = 6.0, 2.0 Hz), 6.72 (d, 1 H, 6.0 Hz), 7.28-7.41 (m, 5 H). 13C NMR (125 MHz, CDCl3): δ = 45.4, 64.4, 66.7, 68.6, 70.6, 79.1, 89.3, 119.6, 128.5, 129.5, 129.9, 131.3, 132.8, 133.7, 136.5, 158.2, 166.8, 199.5. IR (thin film): 3629 (w), 3445 (w), 3065 (w), 1764 (s), 1726 (s) cm-1. MS (APCI):
m/e (%) = 370.1 (100) [M + H]+.
Compound 9b: R
f
= 0.13 (50% EtOAc in hexane); [α]D
23
-78.5 (c 2.0, CH2Cl2). 1H NMR (500 MHz, CDCl3): δ = 2.52 (d, 1 H, J = 16.5 Hz), 2.79 (dd, 1 H, J = 17.0, 5.5 Hz), 3.84 (s, 1 H), 4.26 (dd, 1 H, J = 9.0, 7.0 Hz), 4.77 (t, 1 H, J = 8.5 Hz), 5.08 (d, 1 H, J = 4.0 Hz), 5.16 (t, 1 H, J = 8.0 Hz) 6.34 (br d, 1 H, J = 4.5 Hz), 6.37 (dd, 0.5 H, J = 6.0, 2.0 Hz), 6.61 (d, 0.5 H, J = 6.0 Hz), 7.41-7.48 (m, 5 H). 13C NMR (125 MHz, CDCl3): δ = 29.6, 44.8, 45.3, 65.1, 71.4, 79.3, 79.7, 128.2, 128.8, 129.9, 130.2, 130.6, 132.8, 135.7, 197.2. IR (thin film): 3509 (w), 3110 (w), 2897 (w), 1755 (s), 1729 (s) cm-1. MS (APCI): m/e (%) = 311.1 (10) [M + H]+.
Compounds 10a,b: R
f
= 0.31 (50% EtOAc in hexane). 1H NMR (400 MHz, CDCl3): δ = 1.31 (s, 3 H), 1.43 (s, 3 H), 2.43 (d, 1 H, J = 16.5 Hz), 2.49 (d, 1 H, J = 15.5 Hz), 2.65 (d, 1 H, J = 15.5 Hz), 2.75-2.82 (br, 1 H), 4.08 (dd, 1 H, J = 8.0, 4.4 Hz), 4.19 (dd, 1 H, J = 8.4, 8.4 Hz), 4.74 (t, 2 H, J = 8.8 Hz), 4.82 (dd, 1 H, J = 9.2, 4.4 Hz), 4.87 (dd, 2 H, J = 8.4, 4.8 Hz), 4.92 (d, 2 H, J = 4.4 Hz), 4.99 (dd, 1 H, J = 5.6, 0.8 Hz), 5.92 (d, 1 H, J = 6.0 Hz), 6.06 (br, 1.8 H), 6.13 (dd, 0.50 H, J = 6.4, 2.0 Hz), 6.45 (d, 0.20 H, J = 5.6 Hz), 6.48 (dd, 0.50 H, J = 4.4, 1.0 Hz), 7.27-7.44 (m, 10 H). IR (thin film): 3425 (w), 2927 (m), 1751 (s), 1719 (s) cm-1. MS (APCI): m/e (%) = 300.1 (100) [M + H]+.
22
Sibi MP.
Porter NA.
Acc. Chem. Res.
1999,
32:
163
23 When the reaction was carried out in the absence of ZnCl2, it was very sluggish and inconclusive.