Synlett 2008(6): 911-913  
DOI: 10.1055/s-2008-1042934
LETTER
© Georg Thieme Verlag Stuttgart · New York

The Reaction of α,β-Unsaturated Sulfones with Isobenzofuran and N-Boc-isoindole Using Warrener’s Methodology

Rocío Rincón, Joaquín Plumet*
Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
e-Mail: plumety@quim.ucm.es;
Further Information

Publication History

Received 19 December 2007
Publication Date:
11 March 2008 (online)

Abstract

The cycloaddition reaction of vinyl and acetylenic sulfones with isobenzofuran {benzo[c]furan} and N-Boc-isoindole generated in situ using Warrener’s tetrazine method is described for the first time.

    References and Notes

  • For reviews on the reaction, synthesis, and applications of benzofurans including isobenzofurans see:
  • 1a Hou XL. Yang Z. Wong HNC. Progress in Heterocyclic Chemistry   Part 3, Vol. 15:  Gribble GW. Joule JA. Pergamon; Oxford: 2003.  Chap. 5. p.192-199  
  • 1b Hou XL. Yang Z. Yeung KS. Wong HNC. Progress in Heterocyclic Chemistry   Part 3, Vol. 16:  Gribble GW. Joule JA. Pergamon; Oxford: 2004.  Chap. 5. p.180-188  
  • 1c Hou XL. Yang Z. Yeung KS. Wong HNC. Progress in Heterocyclic Chemistry   Part 3, Vol. 17:  Gribble GW. Joule JA. Pergamon; Oxford: 2005.  Chap. 5. p.158-164  
  • 1d Hou XL. Yang Z. Yeung KS. Wong HNC. Progress in Heterocyclic Chemistry   Part 3, Vol. 18:  Gribble GW. Joule JA. Pergamon; Oxford: 2006.  Chap. 5. p.203-210  
  • 1e Hou XL. Yang Z. Yeung KS. Wong HNC. Progress in Heterocyclic Chemistry   Part 3, Vol. 19:  Gribble GW. Joule JA. Pergamon; Oxford: 2007.  Chap. 5. p.193-200  ; see also previous issues of this series
  • 1f For a more extensive review on isobenzofuran, including many synthetic applications, see: Rodrigo R. Tetrahedron  1988,  44:  2093 
  • 1g For reviews on the isoindole chemistry, see: Bounett R. North SA. Adv. Heterocycl. Chem.  1981,  29:  341 
  • 1h See also: Joule JA. In Rodd’s Chemistry of Carbon Compounds   2nd ed.:  Elsevier; Amsterdam: 1997.  p.557-605  
  • For methods of generation of IBF excluding Warrener’s methodology, see ref. 1f and:
  • 2a Peters O. Friedrichsen W. Trends Heterocycl. Chem.  1995,  4:  217 
  • 2b Hurst DT. In Rodd’s Chemistry of Carbon Compounds   2nd ed.:  Elsevier; Amsterdam: 1997.  p.283-335  
  • 2c Friedrichsen W. Adv. Heterocycl. Chem.  1999,  73:  1 
  • For others more recent references, see:
  • 2d Sambaiah T. Huang DJ. Cheng CW. J. Chem. Soc., Perkin Trans. 1  2000,  195-203  
  • 2e Mikami K. Ohmura H. Org. Lett.  2002,  4:  3355 
  • 2f

    See also ref. 10.

  • Isobenzofurans:
  • 3a Warrener RN. J. Am. Chem. Soc.  1971,  93:  2346 
  • 3b Russell RA. Longmore RW. Warrener RN. Weersuria KD. Aust. J. Chem.  1991,  44:  1341 
  • Isoindoles:
  • 3c Watson PL. Warrener RN. Tetrahedron Lett.  1972,  4295 
  • 3d Malpass JR. Sun G. Fawcett J. Warrener RL. Tetrahedron Lett.  1998,  39:  3083 
  • For the synthesis and isolation of mono- and bisoxadisilole fused isobenzofurans, see:
  • 3e Chen YL. Hau ChK. Wang H. He H. Wong MS. Lee AWM. J. Org. Chem.  2006,  71:  3512 
  • These reactions coupled with 1,3-dipolar cycloaddition reactions constitute the synthetic strategy for the stereocontrolled construction of [n]polynorbornanes structures. For reviews, see:
  • 4a Warrener RN. Butter ON. Russell RA. Synlett  1998,  566 
  • 4b Warrener RN. Eur. J. Org. Chem.  2000,  3363 
  • For theoretical calculations on these reactions, see:
  • 4c Dinadayaladane TC. Tandapani C. Sastry GN. J. Chem. Soc., Perkin Trans. 2  2002,  1902 
  • 4d Dinadayaladane TC. Punnagay M. Sastry GN. THEOCHEM  2003,  626:  247 
  • 4e Margetic D. Warrener RN. Dibbfe PW. J. Mol. Model.  2004,  10:  87 
  • 5 Simpkins NL. In Sulphones in Organic Synthesis   Baldwin JE. Magnus PD. Tetrahedron Organic Chemistry Series, Pergamon Press; Oxford: 1993.  Chap. 6. p.236-245  
  • 6 See ref. 5, Chap 9 and: Nájera C. Yus M. Tetrahedron  1999,  55:  10547 
  • See, for instance:
  • 7a De Lucchi O. Luchini V. Pasquato L. Modena G. J. Org. Chem.  1984,  49:  596 
  • 7b De Lucchi O. Modena G. Tetrahedron  1984,  40:  2585 
  • 7c De Lucchi O. Licini G. Pasquato L. Senta M. Tetrahedron Lett.  1988,  29:  831 
  • 7d Azzena U. Cossu S. De Lucchi O. Melloni G. Tetrahedron Lett.  1989,  30:  1845 
  • For selected accounts, see:
  • 8a Dittmer DC. Takashina N. Tetrahedron Lett.  1964,  3809 
  • 8b Sridhar M. Krishna KL. Sriniras K. Rao JM. Tetrahedron Lett.  1998,  39:  6529 
  • For selected accounts, see:
  • 9a Glass RS. Smith DL.
    J. Org. Chem.  1974,  39:  3712 
  • 9b Hanack M. Massa F. Tetrahedron Lett.  1977,  661 
  • 9c Riera A. Martí M. Moyano A. Pericás MA. Santamaría J. Tetrahedron Lett.  1990,  31:  2173 
  • 9d Back TG. Parvez M. Zhai H. J. Org. Chem.  2006,  71:  5254 
  • Rickborn et al. reported the synthesis of 7e (99% isolated yield, Scheme 3) by reaction of IBF generated from acetal 8 and (E)-1,2-bisphenylsulfonylethylene.10a On the other hand, Padwa et al. reported the capture of the isobenzofuran 10 generated from sulfoxide 9, with the same dienophilic reagent to give 11 as 1:1 diastereoisomeric mixture (69%).10b See:
  • 10a Mirsadeghi S. Rickborn B. J. Org. Chem.  1985,  50:  4340 
  • 10b Padwa A. Cochran JE. Kappe CD. J. Org. Chem.  1996,  61:  3706 
  • 11 Synthesized according to: Cho YH. Fayol A. Lautens M. Tetrahedron: Asymmetry  2006,  17:  416 
12

General Procedure
To equimolecular amounts of tetrazine 3, compounds 4 or 5, and sulfone 6, DMSO (10 mL/mmol) was added. The reaction mixture was stirred under Ar at r.t. for 24 h. After this time the reaction mixture was extracted with Et2O (5 mL) and washed with H2O (3 × 10 mL). The organic phase was dried over MgSO4. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography (SiO2, hexane-EtOAc, 7:3).

13

Compounds 7 were characterized by IR, 1H NMR, and 13C NMR spectra and mass spectral analysis. In the case of compound 7e, spectroscopic data matched with those previously reported. See ref. 10a.

14

Determined by 1H NMR integration. Key signals: exo adduct: H2, δ = 3.16 ppm, dd; endo adduct: H2, δ = 3.96 ppm, dt.

15

Determined by 1H NMR integration. Key signals: exo adduct: H2, δ = 3.28 ppm, dd; endo adduct: H2, δ = 4.00 ppm, dt.