References and Notes
1
Len C.
Mackenzie G.
Tetrahedron
2006,
62:
9085
2a
Fedorov II.
Kazmina EM.
Novicov NA.
Gurskaya GV.
Bochkarev AV.
Jasko MV.
Viktorova LS.
Kukhanova MK.
Balzarini J.
De Clercq E.
Krayevsky AA.
J. Med. Chem.
1992,
35:
4567
2b
Riehokainen E.
Mikerin IE.
Slobodyan NN.
Tulebaev MB.
Severin SE.
Carbohydr. Res.
1999,
320:
161
2c
Yoo SJ.
Kim HO.
Lim Y.
Kim J.
Jeong
LS.
Bioorg.
Med. Chem.
2002,
10:
215
3a
Joergensen PN.
Stein PC.
Wengel J.
J. Am. Chem. Soc.
1994,
116:
2231
3b
Wengel J.
Schinazi RF.
Caruthers MH.
Bioorg. Med. Chem.
1995,
3:
1223
3c
Mikhailopulo IA.
Poopeiko NE.
Tsvetkova TM.
Marochkin AP.
Balzarini J.
De Clercq E.
Carbohydr. Res.
1996,
285:
17
3d
Winqvist A.
Stromberg R.
Eur. J. Org. Chem.
2001,
4305
3e
Obika S.
Osaki T.
Sekiguchi M.
Somjing R.
Harada Y.
Imanishi T.
Tetrahedron Lett.
2004,
45:
4801
3f
Obika S.
Sekiguchi M.
Somjing R.
Imanishi T.
Angew. Chem. Int. Ed.
2005,
44:
1944
3g
Osaki T.
Obika S.
Harada Y.
Mitsuoka Y.
Sugaya K.
Sekiguchi M.
Roongjang S.
Imanishi T.
Tetrahedron
2007,
63:
8977
4
Zhdanov YA.
Alekseev YE.
Alekseeva VG.
Adv. Carbohydr. Chem.
1972,
27:
227
5a
Matsuda A.
Okajima H.
Ueda T.
Heterocycles
1989,
29:
25
5b
Sharma M.
Bobek M.
Tetrahedron Lett.
1990,
31:
5839
5c
Svendsen ML.
Wengel J.
Dahl O.
Kirpekar F.
Roepstorff P.
Tetrahedron
1993,
49:
11341
5d
Prasad CVC.
Caulfield TJ.
Prouty CP.
Saha
AK.
Schairer WC.
Yawman A.
Upson DA.
Kruse LI.
Bioorg. Med. Chem. Lett.
1995,
5:
411
5e
Wengel J.
Svendsen ML.
Joergensen PN.
Nielsen C.
Nucleosides Nucleotides
1995,
14:
1465
5f
Jorgensen PN.
Svendsen ML.
Nielsen C.
Wengel J.
Nucleosides
Nucleotides
1995,
14:
921
6
Serafinowski PJ.
Barnes CL.
Synthesis
1997,
225
7 Reactions of 1-(5′-O-benzoyl-3′-C-methyl-2′-deoxy-β-d-threo-pentofuranosy1)thymine with SOCl2
produced 3′-C-methylidene-2′,3′dideoxy-5methyluridine
in 11% yield.²a
For reviews on the formation of
a wide range of products from vinyl sulfone modified carbohydrates,
see:
8a
Pathak T.
Tetrahedron
2008,
64:
3605
8b
Pathak T.
Bhattacharya R.
Carbohydr. Res.
2008,
343:
1980
For reviews, see:
9a
Taylor RJK.
Chem. Commun.
1999,
217
9b
Taylor RJK.
McAllister GD.
Franck RW.
Carbohydr. Res.
2006,
341:
1298
10a
Bera S.
Sakthivel K.
Langley GJ.
Pathak T.
Tetrahedron
1995,
51:
7857
10b
Bera S.
Langley GJ.
Pathak T.
J.
Org. Chem.
1998,
63:
1754
10c
Bera S.
Pathak T.
Synlett
2004,
2147
11
Tze-Lock C.
Sun F.
Yu L.
Tim-On M.
Chi-Duen P.
J. Chem. Soc., Chem.
Commun.
1994,
1771
12
Synthesis of Compound
8
Dibromodifluoromethane (1 mL) was dropwise added
to a vigorously stirred mixture of the sulfone 6 (0.2
g, 0.33 mmol), alumina-supported KOH (2 g),¹¹ t-BuOH (10 mL) and CH2Cl2 (10
mL) kept at 0 ˚C. The reaction mixture was stirred
at r.t. for an additional 1 h after which the solid catalyst was
removed by suction filtration through a Celite bed. The filtrate
was evaporated to dryness. The filter cake was washed thoroughly
with CH2Cl2 and the washes were combined with
the residue from the first filtrate. The resultant organic solution
was washed with brine and H2O, dried, and evaporated.
The residue was purified on silica gel to obtain compound 8 (0.127 g, 71%); EtOAc-PE
(1:4) as eluent; white solid; mp 96 ˚C; [α]D
²9.² +44.9
(c 0.13, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 3.33 (t, J = 9.6 Hz,
1 H), 3.41 (s, 3 H), 3.56-3.59 (m, 1 H), 4.04 (t, J = 9.2 Hz,
1 H), 4.23-4.27 (m, 1 H), 4.59-4.63 (m, 2 H),
4.69 (d, J = 12.0
Hz, 1 H), 4.76-4.88 (m, 3 H), 4.98 (d, J = 10.8
Hz, 1 H), 6.16 (dd, J = 5.4,
16.0 Hz, 1 H), 6.71 (d, J = 16.0
Hz, 1 H), 7.23-7.44 (m, 20 H). ¹³C
NMR (100 MHz, CDCl3): δ = 55.3, 71.4, 73.4
(CH2), 75.2 (CH2), 75.9 (CH2),
79.8, 81.7, 82.2, 98.2, 126.3, 126.5, 127.6, 127.7, 127.8, 127.9,
128.0, 128.1, 128.2, 128.3, 128.4, 128.5, 128.6, 133.2, 136.5, 137.9, 138.2,
138.7. HRMS (ES+): m/z calcd
for C35H36O5Na: 559.2460 [M + Na+];
found: 559.2454.
Compounds 11a and 12a are reported in the literature, see:
13a
Mansuri MM.
Wos JA.
Martin JC.
Nucleosides Nucleotides
1989,
8:
1463
13b
Herdewijn P.
De Bruyn A.
Wigerinck P.
Hendrix C.
Kerremans L.
Rozenski J.
Busson R.
J.
Chem. Soc., Perkin Trans. 1
1994,
249
14 Compound 12a (0.2
g, 0.37 mmol) was converted into compound 13 (0.055
g, 31%) following the procedure described for the synthesis
of compound 8.
15 Compound 12b (0.2
g, 0.35 mmol) was converted into 14 (0.062
g, 35%) following the procedure described for the synthesis
of compound 8.
16
Compound 11c
White
solid; mp 78 ˚C. ¹H NMR (400
MHz, CDCl3): δ = 1.15 (d, J = 6.8 Hz,
3 H), 1.24 (d, J = 6.6
Hz, 3 H), 1.43 (d, J = 1
Hz, 3 H), 2.39-2.56 (m, 2 H), 2.73-2.86 (m, 1
H), 3.35 (dd, J = 3.6,
10.8 Hz, 1 H), 3.57-3.69 (m, 2 H), 3.89-3.96 (m,
1 H), 6.15 (dd, J = 3.6,
6.6 Hz, 1 H), 7.23-7.37 (m, 9 H), 7.41-7.46 (m,
6 H), 7.81 (d, J = 1.2
Hz, 1 H), 8.51 (br s, 1 H). ¹³C NMR
(100 MHz, CDCl3): δ = 11.9, 23.4, 24.0,
35.4, 39.2, 41.6 (CH2), 61.8 (CH2), 84.9,
85.8, 87.1, 110.6, 127.4, 127.9, 128.6, 135.5, 143.2, 150.2, 164.4.
HRMS (ES+): m/z calcd
for C32H34N2O4SNa: 565.2137 [M + Na]+;
found: 565.2112.
Compound 12c
White
solid; mp 102 ˚C. ¹H NMR (400
MHz, CDCl3): δ = 1.25 (d, J = 6.8 Hz,
3 H), 1.31 (d, J = 6.8
Hz, 3 H), 1.53 (s, 3 H), 2.39-2.54 (m, 1 H), 2.90-3.06
(m, 2 H), 3.34 (dd, J = 2.6,
10.9 Hz, 1 H), 3.74 (dd, J = 2.2,
10.9 Hz, 1 H), 4.02-4.09 (m, 1 H), 4.61-4.64 (m,
1 H), 6.24 (t, J = 6.4
Hz, 1 H), 7.14-7.47 (m, 15 H), 7.63 (s, 1 H), 8.63 (s,
1 H). ¹³C NMR (100 MHz, CDCl3): δ = 11.9,
15.0, 15.1, 33.8 (CH2), 52.4, 56.3, 63.5 (CH2),
78.1, 85.3, 87.4, 111.4, 127.5, 128.1, 128.4, 135.2, 142.9, 149.8,
163.4. HRMS (ES+): m/z calcd for
C32H34N2O6SNa: 597.2035 [M + Na]+;
found: 597.2027.
Compound 15
Compound 12c (0.2 g, 0.34 mmol) was converted into compound 15 (0.06 g, 34%) following the
procedure described for the synthesis of compound 8.
Glassy liquid. ¹H NMR (400 MHz, CDCl3): δ = 1.33
(s, 3 H), 1.55 (d, J = 1.3 Hz,
3 H), 1.84 (s, 3 H), 2.77-2.81 (m, 1 H), 3.15-3.23
(m, 2 H), 3.37-3.44 (m, 1 H), 4.73 (br s, 1 H), 6.16 (dd, J = 5.8, 8.7 Hz,
1 H), 7.20-7.34 (m, 9 H), 7.39-7.47 (m, 6 H),
7.86 (d, J = 0.9
Hz, 1 H), 8.88 (br s, 1 H). ¹³C NMR
(100 MHz, CDCl3): δ = 11.6, 19.9, 22.0,
37.0 (CH2), 65.7 (CH2), 79.6, 84.2, 87.2,
110.9, 126.4, 127.2, 127.9, 128.4, 128.6, 136.2, 143.5, 150.4, 163.9.
HRMS (ES+): m/z calcd
for C32H32N2O4Na: 531.2260 [M + Na]+;
found: 531.2237.
17
Compound 11d
White
solid; mp 82 ˚C. ¹H NMR (400
MHz, CDCl3): δ = 1.39 (s, 3 H), 2.38-2.45
(m, 2 H), 3.28-3.34 (m, 1 H), 3.48-3.56 (m, 2
H), 3.67-3.68 (m, 2 H), 3.93-3.96 (m, 1 H), 6.17 (t, J = 6.4 Hz,
1 H), 7.16-7.43 (m, 20 H), 7.63 (s, 1 H), 8.59 (s, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 11.8, 36.1
(CH2), 40.3, 40.5 (CH2), 62.2 (CH2),
84.7, 84.9, 87.2, 110.7, 127.3, 127.9, 128.7, 135.4, 137.3, 143.2,
150.2, 163.8. HRMS (ES+): m/z calcd
for C36H34N2O4SNa: 613.2137 [M + Na]+; found:
613.2134.
Compound 12d
White
solid; mp 106 ˚C. ¹H NMR (400
MHz, CDCl3): δ = 1.34 (s, 3 H), 2.30-2.40
(m, 1 H), 2.86-2.96 (m, 1 H), 3.27 (dd, J = 2.2,
10.8 Hz, 1 H), 3.55-3.60 (m, 1 H), 3.85-3.95 (m,
1 H), 4.21 (s, 2 H), 4.57-4.60 (m, 1 H), 6.24 (t, J = 6.6 Hz,
1 H), 7.11-7.49 (m, 20 H), 7.57 (s, 1 H), 8.65 (br s, 1
H). ¹³C NMR (100 MHz, CDCl3): δ = 11.8,
34.2 (CH2), 57.6, 59.0 (CH2), 63.5 (CH2),
77.2, 84.9, 87.3, 111.4, 127.2, 127.4, 128.0, 128.4, 129.2, 129.3,
130.5, 135.1, 142.9, 150.3, 164.6. HRMS (ES+): m/z calcd for C36H34N2O6SNa: 645.2035 [M + Na]+;
645.2025.
Compound 16
Compound 12d (0.2 g, 0.32 mmol) was converted into compound 16 (0.085 g, 47%) following the
procedure described for the synthesis of compound 8.
White solid; mp 78 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 1.44 (s,
3 H), 3.04-3.08 (m, 1 H), 3.44-3.49 (m, 3 H),
4.78 (br s, 1 H), 6.29 (t, J = 7.2
Hz, 1 H), 6.37 (s, 1 H), 7.22-7.31 (m, 12 H), 7.37-7.41
(m, 2 H), 7.44-7.46 (m, 6 H), 7.72 (s, 1 H), 8.13 (br s, 1
H). ¹³C NMR (100 MHz, CDCl3): δ = 11.8,
37.4 (CH2), 66.5 (CH2), 82.2, 84.5, 87.2 (C),
111.3 (C), 123.5,127.3, 127.4, 127.9, 128.3, 128.5, 128.6, 135.6,
136.3, 136.8, 143.4, 150.5, 164.1. HRMS (ES+): m/z calcd for C36H32N2O4Na:
579.2260 [M + Na]+;
found: 579.2247.
18
Compound 17
A
mixture of compound 16 (0.05 g, 0.09 mmol),
10% Pd/C (0.01 g) and ammonium formate (catalytic
amount) in MeOH (15 mL) was heated under reflux under H2 atmosphere.
After 1 h, the reaction mixture was brought to r.t. The suspension
was filtered through a Celite bed, and the bed was washed with MeOH.
The filtrate was evaporated under vacuum to afford a thick viscous
liquid. The residue was dissolved in H2O, and the water
layer was washed with CHCl3. The CHCl3 layers
were pooled together, dried over anhyd Na2SO4,
filtered, and the filtrate was evaporated to dryness. The residue
was purified over silica gel to afford compound 17 (0.01
g, 35%). Glassy liquid. ¹H NMR (400 MHz,
CDCl3): δ = 1.93 (s, 3 H, CH3),
1.97-2.05 (m, 1 H, H-2′′), 2.14-2.20
(m, 1 H, H-2′), 2.42 (br s, 1 H, OH), 2.80-2.88
(m, 2 H, H-3′, one of benzyl CH2), 2.91-3.00
(m, 1 H, one of benzyl CH2), 3.82-3.85 (m, 1
H, H-5′′), 3.95-3.98 (m, 1 H, H-5′),
4.21-4.23 (m, 1 H, H-4′), 5.98 (dd, J = 5.2, 8.8 Hz,
1 H, H-1′), 7.17-7.23 (m, 3 H, arom.), 7.26-7.31
(m, 2 H, arom.), 7.65 (s, 1 H, H-6), 8.58 (br s, 1 H, NH). ¹³C
NMR (100 MHz, CDCl3): δ = 12.6 (CH3),
34.9 (benzyl CH2), 36.6 (C-2′), 42.0 (C-2′),
63.1 (C-5′), 80.8 (C-4′), 86.1 (C-1′), 110.8
(C), 126.4 (arom.), 128.4 (arom.), 128.6 (arom.), 136.6 (C-6), 139.7
(C), 150.4 (CO), 164.4 (CO). HRMS (ES+): m/z calcd for C17H21N2O4:
317.1501 [M + Na]+; found:
317.1510.
19 The stereochemistry at C-3′ of 17 was confirmed from NOESY experiments.
Thus, NOESY correlations were observed between H-3′ (δ = 2.80-2.88)
and H-4′ (δ = 4.21-4.23), but
no correlation was observed for H-3′ (δ = 2.80-2.88)
and H-5′ (δ = 3.95-3.98)/H-5′′ (δ = 3.82-3.85), suggesting
H-3′ and H-4′ were in cis relationship
and H-3′ was away from H-5′, H-5′′.
This observation was further supported by NOESY correlation between
benzyl CH2 protons (δ = 2.80-2.88
and δ = 2.91-3.00) and H-5′′ (δ = 3.82-3.85).
20
Pathak T.
Chem.
Rev.
2002,
102:
1623
21
Contreras ML.
Gonzalez FD.
Munoz VC.
Rozas R.
Bol. Soc.
Chil. Quim.
1995,
40:
279 ; Chem. Abstr. 1995, 123, 305993