Synlett 2008(15): 2263-2266  
DOI: 10.1055/s-2008-1078265
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

SO2-Extrusion Reactions of Sulfonylated Nucleosides: A Novel Strategy for the Synthesis of Exocyclic Olefinic Thymidines

Tarun Kumar Pal, Tanmaya Pathak*
Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India
Fax: +91(3222)282252; e-Mail: tpathak@chem.iitkgp.ernet.in;
Further Information

Publication History

Received 14 May 2008
Publication Date:
21 August 2008 (online)

Abstract

Analogues of 3′-C-methylidene-2′,3′-dideoxy-5-meth­yluridine have been synthesized from the 3′-deoxy-3′-sulfonylated derivatives of thymidine using sulfur dioxide extrusion reaction.

    References and Notes

  • 1 Len C. Mackenzie G. Tetrahedron  2006,  62:  9085 
  • 2a Fedorov II. Kazmina EM. Novicov NA. Gurskaya GV. Bochkarev AV. Jasko MV. Viktorova LS. Kukhanova MK. Balzarini J. De Clercq E. Krayevsky AA. J. Med. Chem.  1992,  35:  4567 
  • 2b Riehokainen E. Mikerin IE. Slobodyan NN. Tulebaev MB. Severin SE. Carbohydr. Res.  1999,  320:  161 
  • 2c Yoo SJ. Kim HO. Lim Y. Kim J. Jeong LS. Bioorg. Med. Chem.  2002,  10:  215 
  • 3a Joergensen PN. Stein PC. Wengel J. J. Am. Chem. Soc.  1994,  116:  2231 
  • 3b Wengel J. Schinazi RF. Caruthers MH. Bioorg. Med. Chem.  1995,  3:  1223 
  • 3c Mikhailopulo IA. Poopeiko NE. Tsvetkova TM. Marochkin AP. Balzarini J. De Clercq E. Carbohydr. Res.  1996,  285:  17 
  • 3d Winqvist A. Stromberg R. Eur. J. Org. Chem.  2001,  4305 
  • 3e Obika S. Osaki T. Sekiguchi M. Somjing R. Harada Y. Imanishi T. Tetrahedron Lett.  2004,  45:  4801 
  • 3f Obika S. Sekiguchi M. Somjing R. Imanishi T. Angew. Chem. Int. Ed.  2005,  44:  1944 
  • 3g Osaki T. Obika S. Harada Y. Mitsuoka Y. Sugaya K. Sekiguchi M. Roongjang S. Imanishi T. Tetrahedron  2007,  63:  8977 
  • 4 Zhdanov YA. Alekseev YE. Alekseeva VG. Adv. Carbohydr. Chem.  1972,  27:  227 
  • 5a Matsuda A. Okajima H. Ueda T. Heterocycles  1989,  29:  25 
  • 5b Sharma M. Bobek M. Tetrahedron Lett.  1990,  31:  5839 
  • 5c Svendsen ML. Wengel J. Dahl O. Kirpekar F. Roepstorff P. Tetrahedron  1993,  49:  11341 
  • 5d Prasad CVC. Caulfield TJ. Prouty CP. Saha AK. Schairer WC. Yawman A. Upson DA. Kruse LI. Bioorg. Med. Chem. Lett.  1995,  5:  411 
  • 5e Wengel J. Svendsen ML. Joergensen PN. Nielsen C. Nucleosides Nucleotides  1995,  14:  1465 
  • 5f Jorgensen PN. Svendsen ML. Nielsen C. Wengel J. Nucleosides Nucleotides  1995,  14:  921 
  • 6 Serafinowski PJ. Barnes CL. Synthesis  1997,  225 
  • For reviews on the formation of a wide range of products from vinyl sulfone modified carbohydrates, see:
  • 8a Pathak T. Tetrahedron  2008,  64:  3605 
  • 8b Pathak T. Bhattacharya R. Carbohydr. Res.  2008,  343:  1980 
  • For reviews, see:
  • 9a Taylor RJK. Chem. Commun.  1999,  217 
  • 9b Taylor RJK. McAllister GD. Franck RW. Carbohydr. Res.  2006,  341:  1298 
  • 10a Bera S. Sakthivel K. Langley GJ. Pathak T. Tetrahedron  1995,  51:  7857 
  • 10b Bera S. Langley GJ. Pathak T. J. Org. Chem.  1998,  63:  1754 
  • 10c Bera S. Pathak T. Synlett  2004,  2147 
  • 11 Tze-Lock C. Sun F. Yu L. Tim-On M. Chi-Duen P. J. Chem. Soc., Chem. Commun.  1994,  1771 
  • Compounds 11a and 12a are reported in the literature, see:
  • 13a Mansuri MM. Wos JA. Martin JC. Nucleosides Nucleotides  1989,  8:  1463 
  • 13b Herdewijn P. De Bruyn A. Wigerinck P. Hendrix C. Kerremans L. Rozenski J. Busson R. J. Chem. Soc., Perkin Trans. 1  1994,  249 
  • 20 Pathak T. Chem. Rev.  2002,  102:  1623 
  • 21 Contreras ML. Gonzalez FD. Munoz VC. Rozas R. Bol. Soc. Chil. Quim.  1995,  40:  279 ; Chem. Abstr. 1995, 123, 305993
7

Reactions of 1-(5′-O-benzoyl-3′-C-methyl-2′-deoxy-β-d-threo-pentofuranosy1)thymine with SOCl2 produced 3′-C-methylidene-2′,3′dideoxy-5methyluridine in 11% yield.²a

12

Synthesis of Compound 8 Dibromodifluoromethane (1 mL) was dropwise added to a vigorously stirred mixture of the sulfone 6 (0.2 g, 0.33 mmol), alumina-supported KOH (2 g),¹¹ t-BuOH (10 mL) and CH2Cl2 (10 mL) kept at 0 ˚C. The reaction mixture was stirred at r.t. for an additional 1 h after which the solid catalyst was removed by suction filtration through a Celite bed. The filtrate was evaporated to dryness. The filter cake was washed thoroughly with CH2Cl2 and the washes were combined with the residue from the first filtrate. The resultant organic solution was washed with brine and H2O, dried, and evaporated. The residue was purified on silica gel to obtain compound 8 (0.127 g, 71%); EtOAc-PE (1:4) as eluent; white solid; mp 96 ˚C; [α]D ²9.² +44.9 (c 0.13, CHCl3). ¹H NMR (400 MHz, CDCl3): δ = 3.33 (t, J = 9.6 Hz, 1 H), 3.41 (s, 3 H), 3.56-3.59 (m, 1 H), 4.04 (t, J = 9.2 Hz, 1 H), 4.23-4.27 (m, 1 H), 4.59-4.63 (m, 2 H), 4.69 (d, J = 12.0 Hz, 1 H), 4.76-4.88 (m, 3 H), 4.98 (d, J = 10.8 Hz, 1 H), 6.16 (dd, J = 5.4, 16.0 Hz, 1 H), 6.71 (d, J = 16.0 Hz, 1 H), 7.23-7.44 (m, 20 H). ¹³C NMR (100 MHz, CDCl3): δ = 55.3, 71.4, 73.4 (CH2), 75.2 (CH2), 75.9 (CH2), 79.8, 81.7, 82.2, 98.2, 126.3, 126.5, 127.6, 127.7, 127.8, 127.9, 128.0, 128.1, 128.2, 128.3, 128.4, 128.5, 128.6, 133.2, 136.5, 137.9, 138.2, 138.7. HRMS (ES+): m/z calcd for C35H36O5Na: 559.2460 [M + Na+]; found: 559.2454.

14

Compound 12a (0.2 g, 0.37 mmol) was converted into compound 13 (0.055 g, 31%) following the procedure described for the synthesis of compound 8.

15

Compound 12b (0.2 g, 0.35 mmol) was converted into 14 (0.062 g, 35%) following the procedure described for the synthesis of compound 8.

16

Compound 11c
White solid; mp 78 ˚C. ¹H NMR (400 MHz, CDCl3): δ = 1.15 (d, J = 6.8 Hz, 3 H), 1.24 (d, J = 6.6 Hz, 3 H), 1.43 (d, J = 1 Hz, 3 H), 2.39-2.56 (m, 2 H), 2.73-2.86 (m, 1 H), 3.35 (dd, J = 3.6, 10.8 Hz, 1 H), 3.57-3.69 (m, 2 H), 3.89-3.96 (m, 1 H), 6.15 (dd, J = 3.6, 6.6 Hz, 1 H), 7.23-7.37 (m, 9 H), 7.41-7.46 (m, 6 H), 7.81 (d, J = 1.2 Hz, 1 H), 8.51 (br s, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 11.9, 23.4, 24.0, 35.4, 39.2, 41.6 (CH2), 61.8 (CH2), 84.9, 85.8, 87.1, 110.6, 127.4, 127.9, 128.6, 135.5, 143.2, 150.2, 164.4. HRMS (ES+): m/z calcd for C32H34N2O4SNa: 565.2137 [M + Na]+; found: 565.2112.
Compound 12c
White solid; mp 102 ˚C. ¹H NMR (400 MHz, CDCl3): δ = 1.25 (d, J = 6.8 Hz, 3 H), 1.31 (d, J = 6.8 Hz, 3 H), 1.53 (s, 3 H), 2.39-2.54 (m, 1 H), 2.90-3.06 (m, 2 H), 3.34 (dd, J = 2.6, 10.9 Hz, 1 H), 3.74 (dd, J = 2.2, 10.9 Hz, 1 H), 4.02-4.09 (m, 1 H), 4.61-4.64 (m, 1 H), 6.24 (t, J = 6.4 Hz, 1 H), 7.14-7.47 (m, 15 H), 7.63 (s, 1 H), 8.63 (s, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 11.9, 15.0, 15.1, 33.8 (CH2), 52.4, 56.3, 63.5 (CH2), 78.1, 85.3, 87.4, 111.4, 127.5, 128.1, 128.4, 135.2, 142.9, 149.8, 163.4. HRMS (ES+): m/z calcd for C32H34N2O6SNa: 597.2035 [M + Na]+; found: 597.2027.
Compound 15
Compound 12c (0.2 g, 0.34 mmol) was converted into compound 15 (0.06 g, 34%) following the procedure described for the synthesis of compound 8. Glassy liquid. ¹H NMR (400 MHz, CDCl3): δ = 1.33 (s, 3 H), 1.55 (d, J = 1.3 Hz, 3 H), 1.84 (s, 3 H), 2.77-2.81 (m, 1 H), 3.15-3.23 (m, 2 H), 3.37-3.44 (m, 1 H), 4.73 (br s, 1 H), 6.16 (dd, J = 5.8, 8.7 Hz, 1 H), 7.20-7.34 (m, 9 H), 7.39-7.47 (m, 6 H), 7.86 (d, J = 0.9 Hz, 1 H), 8.88 (br s, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 11.6, 19.9, 22.0, 37.0 (CH2), 65.7 (CH2), 79.6, 84.2, 87.2, 110.9, 126.4, 127.2, 127.9, 128.4, 128.6, 136.2, 143.5, 150.4, 163.9. HRMS (ES+): m/z calcd for C32H32N2O4Na: 531.2260 [M + Na]+; found: 531.2237.

17

Compound 11d
White solid; mp 82 ˚C. ¹H NMR (400 MHz, CDCl3): δ = 1.39 (s, 3 H), 2.38-2.45 (m, 2 H), 3.28-3.34 (m, 1 H), 3.48-3.56 (m, 2 H), 3.67-3.68 (m, 2 H), 3.93-3.96 (m, 1 H), 6.17 (t, J = 6.4 Hz, 1 H), 7.16-7.43 (m, 20 H), 7.63 (s, 1 H), 8.59 (s, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 11.8, 36.1 (CH2), 40.3, 40.5 (CH2), 62.2 (CH2), 84.7, 84.9, 87.2, 110.7, 127.3, 127.9, 128.7, 135.4, 137.3, 143.2, 150.2, 163.8. HRMS (ES+): m/z calcd for C36H34N2O4SNa: 613.2137 [M + Na]+; found: 613.2134.
Compound 12d
White solid; mp 106 ˚C. ¹H NMR (400 MHz, CDCl3): δ = 1.34 (s, 3 H), 2.30-2.40 (m, 1 H), 2.86-2.96 (m, 1 H), 3.27 (dd, J = 2.2, 10.8 Hz, 1 H), 3.55-3.60 (m, 1 H), 3.85-3.95 (m, 1 H), 4.21 (s, 2 H), 4.57-4.60 (m, 1 H), 6.24 (t, J = 6.6 Hz, 1 H), 7.11-7.49 (m, 20 H), 7.57 (s, 1 H), 8.65 (br s, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 11.8, 34.2 (CH2), 57.6, 59.0 (CH2), 63.5 (CH2), 77.2, 84.9, 87.3, 111.4, 127.2, 127.4, 128.0, 128.4, 129.2, 129.3, 130.5, 135.1, 142.9, 150.3, 164.6. HRMS (ES+): m/z calcd for C36H34N2O6SNa: 645.2035 [M + Na]+; 645.2025.
Compound 16
Compound 12d (0.2 g, 0.32 mmol) was converted into compound 16 (0.085 g, 47%) following the procedure described for the synthesis of compound 8. White solid; mp 78 ˚C. ¹H NMR (400 MHz, CDCl3): δ = 1.44 (s, 3 H), 3.04-3.08 (m, 1 H), 3.44-3.49 (m, 3 H), 4.78 (br s, 1 H), 6.29 (t, J = 7.2 Hz, 1 H), 6.37 (s, 1 H), 7.22-7.31 (m, 12 H), 7.37-7.41 (m, 2 H), 7.44-7.46 (m, 6 H), 7.72 (s, 1 H), 8.13 (br s, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 11.8, 37.4 (CH2), 66.5 (CH2), 82.2, 84.5, 87.2 (C), 111.3 (C), 123.5,127.3, 127.4, 127.9, 128.3, 128.5, 128.6, 135.6, 136.3, 136.8, 143.4, 150.5, 164.1. HRMS (ES+): m/z calcd for C36H32N2O4Na: 579.2260 [M + Na]+; found: 579.2247.

18

Compound 17
A mixture of compound 16 (0.05 g, 0.09 mmol), 10% Pd/C (0.01 g) and ammonium formate (catalytic amount) in MeOH (15 mL) was heated under reflux under H2 atmosphere. After 1 h, the reaction mixture was brought to r.t. The suspension was filtered through a Celite bed, and the bed was washed with MeOH. The filtrate was evaporated under vacuum to afford a thick viscous liquid. The residue was dissolved in H2O, and the water layer was washed with CHCl3. The CHCl3 layers were pooled together, dried over anhyd Na2SO4, filtered, and the filtrate was evaporated to dryness. The residue was purified over silica gel to afford compound 17 (0.01 g, 35%). Glassy liquid. ¹H NMR (400 MHz, CDCl3): δ = 1.93 (s, 3 H, CH3), 1.97-2.05 (m, 1 H, H-2′′), 2.14-2.20 (m, 1 H, H-2′), 2.42 (br s, 1 H, OH), 2.80-2.88 (m, 2 H, H-3′, one of benzyl CH2), 2.91-3.00 (m, 1 H, one of benzyl CH2), 3.82-3.85 (m, 1 H, H-5′′), 3.95-3.98 (m, 1 H, H-5′), 4.21-4.23 (m, 1 H, H-4′), 5.98 (dd, J = 5.2, 8.8 Hz, 1 H, H-1′), 7.17-7.23 (m, 3 H, arom.), 7.26-7.31 (m, 2 H, arom.), 7.65 (s, 1 H, H-6), 8.58 (br s, 1 H, NH). ¹³C NMR (100 MHz, CDCl3): δ = 12.6 (CH3), 34.9 (benzyl CH2), 36.6 (C-2′), 42.0 (C-2′), 63.1 (C-5′), 80.8 (C-4′), 86.1 (C-1′), 110.8 (C), 126.4 (arom.), 128.4 (arom.), 128.6 (arom.), 136.6 (C-6), 139.7 (C), 150.4 (CO), 164.4 (CO). HRMS (ES+): m/z calcd for C17H21N2O4: 317.1501 [M + Na]+; found: 317.1510.

19

The stereochemistry at C-3′ of 17 was confirmed from NOESY experiments. Thus, NOESY correlations were observed between H-3′ (δ = 2.80-2.88) and H-4′ (δ = 4.21-4.23), but no correlation was observed for H-3′ (δ = 2.80-2.88) and H-5′ (δ = 3.95-3.98)/H-5′′ (δ = 3.82-3.85), suggesting H-3′ and H-4′ were in cis relationship and H-3′ was away from H-5′, H-5′′. This observation was further supported by NOESY correlation between benzyl CH2 protons (δ = 2.80-2.88 and δ = 2.91-3.00) and H-5′′ (δ = 3.82-3.85).