Subscribe to RSS
DOI: 10.1055/s-2008-1078487
A Short Total Synthesis for Biologically Interesting (+)- and (-)-Machaeriol A
Publication History
Publication Date:
11 June 2008 (online)

Abstract
This paper describes a new and efficient synthetic approach for biologically interesting natural (+)-machaeriol A and its unnatural enantiomer (-)-machaeriol A. The key strategies involve stilbene formation through a Horner-Wadsworth-Emmons reaction and trans-hexahydrodibenzopyran formation through a tandem aldol-hetero-Diels-Alder reaction.
Key words
cannabinoid analogues - hetero-Diels-Alder reaction - (+)-machaeriol A - (-)-machaeriol A
- 1
Gaoni Y.Mechoulam R. J. Am. Chem. Soc. 1964, 86: 1646 -
2a
Porter AC.Felder CC. Pharmacol. Ther. 2001, 90: 45 -
2b
Williamson EM.Evans FJ. Drugs 2000, 60: 1303 -
2c
Hollister LE. Pharmacol. Rev. 1986, 38: 1 - 3
Razdan RK. In The Total Synthesis of Natural Products Vol. 4:ApSimon J. Wiley; New York: 1981. p.185 - 4
Martin P.Consroe P. Science 1976, 194: 965 -
5a
Matsuda LA.Lolait SJ.Brownstein MJ.Young AC.Bonner TI. Nature (London) 1990, 346: 561 -
5b
Munro S.Thomas KL.Abu-Shaar M. Nature (London) 1993, 365: 61 -
6a
Mendizabal VE.Adler-Graschinsky E. British J. Pharmacol. 2007, 151: 427 -
6b
Ashton CH.Moore PB.Gallagher P.Young AH. J. Psychopharmacol. 2005, 19: 293 -
7a
Muhammad I.Li X.-C.Jacob MR.Tekwani BL.Dunbar DC.Ferreira D. J. Nat. Prod. 2003, 66: 804 -
7b
Muhammad I.Li X.-C.Dunbar DC.ElSohly MA.Khan IA. J. Nat. Prod. 2001, 64: 1322 - 8
Chittiboyina AG.Reddy CR.Watkins EB.Avery MA. Tetrahedron Lett. 2004, 45: 1689 - 9
Huang Q.Wang Q.Zheng J.Zhang J.Pan X.She X. Tetrahedron 2007, 63: 1014 - 10
Wang Q.Huang Q.Chen B.Lu J.Wang H.She X.Pan X. Angew. Chem. Int. Ed. 2006, 45: 3651 - 11
Lee YR.Choi JH.Yoon SH. Tetrahedron Lett. 2005, 46: 7539 -
12a
Lee YR.Kim JH. Synlett 2007, 2232 -
12b
Lee YR.Lee WK.Noh SK.Lyoo WS. Synthesis 2006, 853 -
12c
Lee YR.Kim DH. Synthesis 2006, 603 -
13a
Wang X.Lee YR. Tetrahedron Lett. 2007, 48: 6275 -
13b
Wang X.Lee YR. Synthesis 2007, 3044 -
13c
Lee YR.Xia L. Synthesis 2007, 3240 - 14
Wang M.Jin Y.Ho C.-T. J. Agric. Food Chem. 1999, 47: 3974 -
15a
Gehlert R.Schoeppner A.Kindl H. Mol. Plant Microbe Interact. 1990, 3: 444 -
15b
Bois E.Lieutier F.Yart A. Eur J. Plant Pathol. 1999, 105: 51 -
16a
Fang J.Lu M.Chen J.Zhu H.Li Y.Yang L.Wu L.Liu Z. Chemistry 2002, 8: 4191 -
16b
Ohguchi K.Tanaka T.Kido T.Baba K.Iinuma M.Matsumoto K.Akao Y.Nazawa Y. Biochem. Biophys. Res. Commun. 2003, 307: 861 -
16c
Lee SK.Lee HJ.Min HY.Park EJ.Lee KM.Ahn YH.Cho YJ.Pyee JH. Fitoterapia 2005, 76: 258 -
16d
Pacher T.Segar C.Engelmeier D.Vajrodaya S.Hofer O.Greger H. J. Nat. Prod. 2002, 65: 820 - 17
Park E.-J.Min H.-Y.Ahn Y.-H.Bae C.-M.Pyee J.-H.Lee SK. Bioorg. Med. Chem. Lett. 2004, 14: 5895 - 19
Saimoto H.Yoshida K.Murakami T.Morimoto M.Sashiwa H.Shigemasa Y. J. Org. Chem. 1996, 61: 6768 - 20
Talley JJ. J. Org. Chem. 1985, 50: 1695 - 21
Marino JP.Dax SL. J. Org. Chem. 1984, 49: 3672
References and Notes
Spectral Data for Compound 1
1H NMR (300 MHz, CDCl3): δ = 7.48 (2 H, d, J = 7.3 Hz), 7.36 (2 H, dd, J = 7.7, 7.3 Hz), 7.27 (1 H, t, J = 7.7 Hz), 7.01 (1 H, d, J = 16.3 Hz), 6.93 (1 H, d, J = 16.3 Hz), 6.63 (1 H, d, J = 1.3 Hz), 6.44 (1 H, d, J = 1.3 Hz), 3.10 (1 H, br d, J = 12.6 Hz), 2.52 (1 H, ddd, J = 13.4, 11.1, 2.4 Hz), 1.90-1.87 (2 H, m), 1.68-1.64 (1 H, m), 1.52 (1 H, ddd, J = 11.4, 11.1, 2.1 Hz), 1.43 (3 H, s), 1.17-1.12 (2 H, m), 1.12 (3 H, s), 0.98 (3 H, d, J = 6.6 Hz), 0.81 (1 H, J = 13.4, 12.6 Hz). 13C NMR (75 MHz, CDCl3): δ = 155.8, 155.6, 137.7, 137.1, 129.0, 128.9, 128.5, 127.9, 126.9, 113.5, 108.8, 106.0, 77.8, 49.5, 39.3, 36.1, 35.9, 33.3, 28.5, 28.1, 23.0, 19.5. IR (neat): 3382, 3026, 2922, 2868, 1615, 1568, 1510, 1451, 1422, 1356, 1265, 1138, 1041, 961, 906, 878, 822, 737, 694 cm-1.