RSS-Feed abonnieren
DOI: 10.1055/s-2008-1078525
Practical and Convenient Suzuki-Miyaura Coupling Reaction and α-Arylation Using Diphenylcyclopropylphosphine Ligands
Publikationsverlauf
Publikationsdatum:
19. Juni 2008 (online)

Abstract
A new ligand, diphenylmethylcyclopropylphosphine, has successfully been applied in the palladium-catalyzed Suzuki-Miyaura coupling and α-arylation of ketones with aryl chlorides in moderate to high yields. An asymmetric coupling between anisyl chloride and 2-methylindan-1-one was also tested as the first trial, giving 80% yield and 41% ee with 1 mol% of Pd.
Key words
cross-coupling - halides - ligands - palladium
-
1a
Littke AF.Fu GC. Angew. Chem. Int. Ed. 2002, 41: 4176 -
1b
Zapt A.Beller M. Chem. Commun. 2005, 431 -
1c
Buchwald SL.Mauger C.Mignani G.Scholz U. Adv. Synth. Catal. 2006, 348: 23 -
2a
Hartwig JF. Angew. Chem. Int. Ed. 1998, 37: 2046 -
2b
Yang BH.Buchwald SL. J. Organomet. Chem. 1999, 576: 125 -
3a
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 -
3b
Miyaura N. Top. Curr. Chem. 2002, 219: 11 -
4a
Fox JM.Huang X.Chieffi A.Buchwald SL. J. Am. Chem. Soc. 2000, 122: 1360 -
4b
Culkin DA.Hartwig JF. Acc. Chem. Res. 2003, 36: 234 -
5a
Hamann BC.Hartwig JF. J. Am. Chem. Soc. 1998, 120: 7369 -
5b
Kataoka N.Shelby Q.Stambuli JP.Hartwig JF. J. Org. Chem. 2002, 67: 5553 -
5c
Stambuli JP.Kuwano R.Hartwig JF. Angew. Chem. Int. Ed. 2002, 41: 4746 -
5d
Hama T.Culkin DA.Hartwig JF. J. Am. Chem. Soc. 2006, 128: 4976 -
5e
Shen Q.Hartwig JF. J. Am. Chem. Soc. 2006, 128: 10028 -
6a
Wolfe JP.Buchwald SL. Angew. Chem. Int. Ed. 1999, 38: 2413 -
6b
Wolfe JP.Tomori H.Sadighi JP.Yin J.Buchwald SL. J. Org. Chem. 2000, 65: 1158 -
6c
Huang X.Anderson KW.Zim D.Jiang L.Klapars A.Buchwald SL. J. Am. Chem. Soc. 2003, 125: 6653 -
6d
Nguyen HN.Huang X.Buchwald SL. J. Am. Chem. Soc. 2003, 125: 11818 -
6e
Walker SD.Barder TE.Martinelli JR.Buchwald SL. Angew. Chem. Int. Ed. 2004, 43: 1871 -
6f
Barder TE.Walker SD.Martinelli JR.Buchwald SL. J. Am. Chem. Soc. 2005, 127: 4685 -
7a
Littke AF.Fu GC. Angew. Chem. Int. Ed. 1998, 37: 3387 -
7b
Littke AF.Dai C.Fu GC. J. Am. Chem. Soc. 2000, 122: 4020 -
7c
Liu S.-Y.Choi MJ.Fu GC. Chem. Commun. 2001, 2408 -
7d
Littke AF.Schwarz L.Fu GC. J. Am. Chem. Soc. 2002, 124: 6343 -
8a
Zapf A.Ehrentraut A.Beller M. Angew. Chem. Int. Ed. 2000, 39: 4153 -
8b
Ehrentraut A.Zapf A.Beller M. Adv. Synth. Catal. 2002, 344: 209 -
8c
Zapf A.Jackstell R.Rataboul F.Riermeier T.Monsees A.Fuhrmann C.Shaikh N.Dingerdissen U.Beller M. Chem. Commun. 2004, 38 -
8d
Rataboul F.Zapf A.Jackstell R.Harkal S.Riermeier T.Monsees A.Dingerdissen U.Beller M. Chem. Eur. J. 2004, 10: 2983 -
9a
Zhang C.Huang J.Trudell ML.Nalan SP. J. Org. Chem. 1999, 64: 3804 -
9b
Grasa GA.Viciu MS.Huang J.Nolan SP. J. Org. Chem. 2001, 66: 7729 -
9c
Navarro O.Kelly RA.Nolan SP. J. Am. Chem. Soc. 2003, 125: 16194 -
9d
Viciu MS.Kelly RA.Stevens ED.Naud F.Studer M.Nolan SP. Org. Lett. 2003, 5: 1479 -
10a
Li GY. Angew. Chem. Int. Ed. 2001, 40: 1513 -
10b
Li GY. J. Org. Chem. 2002, 67: 3643 -
11a
Urgaonkar S.Nagarajan M.Verkade JG. Tetrahedron Lett. 2002, 43: 8921 -
11b
Urgaonkar S.Nagarajan M.Verkade JG. Org. Lett. 2003, 5: 815 -
11c
Kingston JV.Verkade JG. J. Org. Chem. 2007, 72: 2816 -
12a
Nishiyama M.Yamamoto T.Koie Y. Tetrahedron. Lett. 1998, 39: 617 -
12b
Yamamoto T.Nishiyama M.Koie Y. Tetrahedron Lett. 1998, 39: 2367 -
13a
Colacot TJ.Shea HA. Org. Lett. 2004, 6: 3731 -
13b
Brenstrum T.Clattenburg J.Britten J.Zavorine S.Dyck J.Robertson AJ.McNulty J.Capretta A. Org. Lett. 2006, 8: 103 -
13c
So CM.Lau CP.Kwong FY. Org. Lett. 2007, 9: 2795 -
13d
Bei X.Crevier T.Guram AS.Jandeleit B.Powers TS.Turner HW.Uno T.Weinberg WH. Tetrahedron Lett. 1999, 40: 3855 -
13e
Bei X.Uno T.Norris J.Turner HW.Weinberg WH.Guram AS.Petersen JL. Organometallics 1999, 18: 1840 -
13f
Feuerstein M.Doucet H.Santelli M. Tetrahedron Lett. 2001, 42: 5659 -
13g
Feuerstein M.Berthiol F.Doucet H.Santelli M. Synlett 2002, 1807 -
13h
Gstöttmayr CWK.Böhm VPW.Herdtweck E.Grosche M.Herrmann WA. Angew. Chem. Int. Ed. 2002, 41: 1363 -
15a
Suzuki K.Hori Y.Kobayashi T. Adv. Synth. Catal. 2008, 350: 652 -
15b
Suzuki K.Hori Y.Nishikawa T.Kobayashi T. Adv. Synth. Catal. 2007, 349: 2089 -
15c
Suzuki K.Fontaine A.Hori Y.Kobayashi T. Synlett 2007, 3206 -
16a
Åhman J.Wolfe JP.Troutman MV.Paluchi M.Buchwald SL. J. Am. Chem. Soc. 1998, 120: 1918 -
16b
Hamada T.Chieffi A.Åhman J.Buchwald SL. J. Am. Chem. Soc. 2002, 124: 1261 -
16c
Liu X.Hartwig JF. J. Am. Chem. Soc. 2004, 126: 5182
References and Notes
As a series of BRIDPs, ligands 1 and 2 are commercially available from Strem Chemicals, Inc. and Sigma-Aldrich.
17For optically pure phosphine 1, it is now under investigation.
18Phosphine ligand 2 was prepared with the same manner as ligand 1, see ref. 15a. ¹H NMR (500 MHz, CDCl3): δ = 0.99-1.40 (m, 11 H), 1.01 (d, J = 1.7 Hz, 3 H), 1.55-1.93 (m, 13 H), 7.00 (t, J = 7.6 Hz, 1 H), 7.07 (t, J = 7.6 Hz, 1 H), 7.12 (t, J = 7.6 Hz, 2 H), 7.19 (d, J = 7.6 Hz, 2 H), 7.28-7.37 (m, 4 H). ¹³C NMR (125 MHz, CDCl3): δ = 20.4 (d, J = 4.4 Hz), 23.9 (d, J = 17.1 Hz), 26.52, 26.54, 27.0 (d, J = 12.6 Hz), 27.36, 27.44 (d, J = 3.9 Hz), 27.9 (d, J = 4.0 Hz), 28.3 (d, J = 15.5 Hz), 29.5, 30.1 (d, J = 8.9 Hz), 31.8 (d, J = 20.1 Hz), 32.7 (d, J = 15.5 Hz), 34.2 (d, J = 25.3 Hz), 34.6 (d, J = 15.8 Hz), 40.6 (d, J = 10.9 Hz), 125.9, 126.1, 127.9, 128.2, 129.8 (d, J = 2.5 Hz), 130.3 (d, J = 1.3 Hz), 143.8 (d, J = 8.8 Hz), 143.9. ³¹P NMR (202 MHz, CDCl3): δ = 11.21. ESI-HRMS: m/z calcd for C28H37P [M + Na]+: 427.2531; found [M + Na]+: 427.2534.
19Optically pure phosphine 2 was prepared by oxidation of phosphine
with H2O2, HPLC resolution and the following reduction
by Cl3SiH.
Oxidation of
Phosphine Ligand 2
H2O2 (30% in
H2O, 1.26 g, 11.1 mmol) was added dropwise to a solution
of phosphine 2 (3.00 g, 7.42 mmol) in toluene (15
mL) at 0 ˚C. After the mixture was stirred at 35 ˚C
for 2 h, an organic phase was separated, washed with 20% aq Na2SO3 and
H2O, dried over anhyd MgSO4, and concentrated
under reduced pressure to give a crude oxide (3.14 g, quantitative
yield) as a white solid. The crude was used for chiral resolution
without further purification. ¹H NMR (500 MHz,
CDCl3): δ = 1.09 (d, J = 11.8
Hz, 3 H), 1.15-1.32 (m, 7 H), 1.33-2.23 (m, 16
H), 2.52 (dd, J = 4.7, 12.9
Hz, 1 H), 7.07 (t, J = 7.3
Hz, 1 H), 7.14-7.21 (m, 3 H), 7.24-7.32 (m, 2
H), 7.39-7.50 (m, 4 H). ¹³C
NMR (125 MHz, CDCl3): δ = 19.9, 20.0,
23.51, 23.53, 23.9, 24.5, 25.36, 25.40, 25.91, 25.95, 25.98, 26.11,
26.12, 26.25, 26.3, 26.6, 26.7, 27.28, 27.34, 27.37, 27.44, 27.53,
27.55, 28.37, 28.39, 35.4, 35.9, 38.8, 39.3, 40.46, 40.48, 126.1,
126.4, 127.6, 128.5, 129.6, 129.9, 141.64, 141.66, 143.4 (observed complexity
due to P-C splitting). ³¹P
NMR (202 MHz, CDCl3): δ = 49.88. ESI-HRMS: m/z calcd for C28H37PO [M + H]+:
241.2660; found [M + H]+:
241.2656.
HPLC Resolution of Racemic
Oxide of Phosphine 2
The optically pure oxide was
obtained by HPLC resolution with a Chiralcel OD-H column (250 mm × 20
mm, hexane-2-PrOH = 96:4, flow
rate = 10 mL/min).
Reduction of Oxide of Phosphine 2
Under
a nitrogen atmosphere, SiCl3H (2.26 g, 16.7 mmol) was
added dropwise to a solution of optically pure phosphine oxide (1.00
g, 2.38 mmol) and N,N-dimethylaniline
(2.31 g, 19.0 mmol) in xylene (16 mL) at 85 ˚C. After stirring
at 115 ˚C for 1.5 h, remaining SiCl3H
was removed from the reaction solution by distillation. The solution
was washed with 20% aq NaOH and H2O, dried over
anhyd MgSO4, and concentrated under reduced pressure.
The concentrate was purified by recrystallization from toluene (1.5
mL) and MeOH (6 mL) to give the optically pure phosphine 2 as a white solid (0.49 g, 51%).
Typical Procedure
for the Coupling Reaction of Aryl Halides with Arylboronic Acids
A
solution of powdered K2CO3 (2.0 equiv), [(π-allyl)PdCl]2 (0.5
mol%) and ligand (2.0 mol%) in toluene (0.5 M)
was stirred for 15 min at r.t. Arylboronic acid (1.5 equiv) and
aryl halide (1.0 equiv) were added to the premixed solution. The mixture
was stirred at 80 ˚C for the time specified. After cooling
to r.t., the reaction solution was diluted with toluene, washed
with H2O, dried over MgSO4, and concentrated under
reduced pressure. Purification of the concentrate by column chromatography
on SiO2 gave the coupling product.
4-Methoxy-4′-methylbiphenyl (Table
1, Entry 3)
Purification by flash chromatography (hexane-toluene = 2:1)
gave a white solid. ¹H NMR (300 MHz, CDCl3): δ = 2.38
(s, 3 H), 3.84 (s, 3 H), 6.96 (d, J = 9.0
Hz, 2 H), 7.22 (d, J = 8.0
Hz, 2 H), 7.44 (d, J = 8.0
Hz, 2 H), 7.50 (d, J = 9.0
Hz). ¹³C NMR (75 MHz, CDCl3): δ = 21.0,
55.3, 114.1, 126.6, 127.9, 129.4, 133.7, 136.3, 138.0, 158.9.
Typical Procedure
for the Coupling Reaction of Aryl Halides with Ketones
A
solution of NaOt-Bu (1.2 equiv), [(π-allyl)PdCl]2 (0.5 mol%)
and ligand (2.0 mol%) in toluene (0.5 M) was stirred for
15 min at r.t. Aryl halide (1.0 equiv) and ketone (1.1 equiv) were
added to the solution. The mixture was stirred at 80 ˚C
for the time specified. After cooling to r.t., the reaction solution
was diluted with toluene, washed with H2O, dried over
MgSO4, and concentrated under reduced pressure. Purification
of the concentrate by column chromatography on SiO2 gave
the coupling product.
2-(4-Methoxyphenyl)propiophenone
(Table 1, Entry 7)
Purification by flash chromatography
(hexane-EtOAc = 8:1) gave a
colorless oil. ¹H NMR (300 MHz, CDCl3): δ = 1.50
(d, J = 6.9
Hz, 3 H), 3.75 (s, 3 H), 4.64 (q, J = 6.9
Hz, 1 H), 6.82 (d, J = 8.7
Hz, 2 H), 7.20 (d, J = 8.7 Hz,
2 H), 7.33-7.41 (m, 2 H), 7.42-7.51 (m, 1 H),
7.90-7.98 (m, 2 H). ¹³C NMR
(75 MHz, CDCl3): δ = 19.5, 46.9, 55.2, 114.4,
128.4, 128.7, 128.8, 132.7, 133.5, 136.5, 158.5, 200.5.