Nuklearmedizin 2012; 51(03): 73-78
DOI: 10.3413/Nukmed-0471-12-01
Original article
Schattauer GmbH

3D ultrasound DICOM data of the thyroid gland

First experiences in exporting, archiving, second reading and 3D processing3D-Ultraschall-DICOM-Daten der SchilddrüseErste Erfahrungen mit Export, Archivierung, Nachbetrachtung und 3D-Nachverarbeitung
M. Freesmeyer
1   Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
,
A. Darr
1   Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
,
J.-H. Schierz
1   Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
,
E. Schleußner
2   Clinic of Obstetrics and Gynaecology, Jena University Hospital, Jena, Germany
,
S. Wiegand
1   Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
,
T. Opfermann
1   Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received: 26. Januar 2012

accepted in revised form: 30. März 2012

Publikationsdatum:
29. Dezember 2017 (online)

Summary

Purpose: It has recently become possible to generate and archive three-dimensional ultrasound (3D-US) volume data with the DICOM standard Enhanced Ultrasound Volume Storage (EUVS). The objective of this study was to examine the application of the EUVS standard based on the example of thyroid ultrasound. Patients, methods: 32 patients, who were referred for thyroid diagnosis, were given a 3D-US examination of the thyroid gland (GE Voluson E8, convex 3D probe RAB4–8-D). The 3D data sets were exported to EUVS. Necessary additions to DICOM entries and transformation into an established DICOM standard were carried out. The visual assessment and volume measurements were performed by two experts on nuclear medicine using standard software in our hospital. Results: In 24/32 (75%) of the patients, the whole organ was successfully recorded in a single 3D scan; in 8/32 (25%), only part of organ could be covered. In all cases, 3D-US data could be exported and archived. After supplementing the DICOM entry Patient Orientation and transformation into the DICOM PET format, 3D-US data could be displayed in the correct orientation and size at any viewing workstation and any web browser-based PACS viewer. Afterwards, 3D processing such as multiplanar reformation, volumetric measurements and image fusion with data of other cross sectional modalities could be performed. The intraclass correlation of the volume measurements was 0,94 and the interobserver variability was 5.7%. Conclusion: EUVS allows the generation, distribution and archiving of 3D-US data of the thyroid, facilitates a second reading by another physician and creates conditions for advanced 3D processing using routine software

Zusammenfassung

Seit kurzem ist es möglich, dreidimensionale Ultraschallvolumendaten (3D-US) mittels des DICOM-Standards EUVS (Enhanced Ultrasound Volume Storage) zu erzeugen und zu speichern. Ziel dieser Studie war es, die Anwendbarkeit des EUVS-Standards am Beispiel des Ultra-schalls der Schilddrüse zu untersuchen. Patienten, Methoden: Bei 32 Patienten, die zur Diagnostik einer Schilddrüsenerkrankung überwiesen wurden, wurde ein 3D-Ultraschall der Schilddrüse durchgeführt (GE Voluson E8, convex 3D probe RAB4–8-D). Die 3D-Daten wurden im EUVS-Format gespeichert und exportiert. Notwendige DICOM- Einträge sowie die Umwandlung in ein etabliertes DICOMFormat wurden durchgeführt. Die visuelle Beurteilung sowie die Volumen-Messungen wurden durch zwei erfahrene Nuklearmediziner mittels Standard-Software in unserer Klinik durchgeführt. Ergebnisse: Bei 24/32 (75%) Patienten wurde das komplette Organ in einem 3D-Scan vollständig, bei 8/32 (25%) unvollständig erfasst. In allen Fällen konnten die Daten erfolgreich exportiert und archiviert werden. Nachdem der DICOM-Eintrag „Patientenorientierung“ hinzugefügt und die Daten in das DICOM-PET-Format umgewandelt wurden, konnten die 3D-US-Daten in korrekter Ausrichtung und Größe auf allen Workstations und mit allen web-basierten PACSViewern dargestellt werden. Anschließend konnten 3D-Nachverarbeitungen wie multiplanare Reformatierungen, Volumenbestimmungen und Bildfusionen mit anderen Schnittbildverfahren durchgeführt werden. Die Intraklassenkorrelation der Volumenmessungen betrug 0,94%, die Interobservervariabilität 5,7%. Schlussfolgerung: EUVS erlaubt die Erstellung, Verteilung und Archivierung dreidimensionaler US-Daten der Schilddrüse und ermöglicht die Nachbetrachtung durch einen zweiten Arzt sowie die 3D-Nachverarbeitung mit Standard-Software.

 
  • References

  • 1 Andermann P, Schlogl S, Mader U. et al. Intra- and interobserver variability of thyroid volume measurements in healthy adults by 2D versus 3D ultrasound. Nuklearmedizin 2007; 46: 1-7.
  • 2 Brendel B, Winter S, Rick A. et al. Registration of 3D CT and ultrasound datasets of the spine using bone structures. Comput Aided Surg 2002; 7: 146-155.
  • 3 Bucki M, Chassat F, Galdames F. et al. Real-Time SPECT and 2D Ultrasound Image Registration. Ayache N, Ourselin S, Maeder A. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2007:. Berlin, Heidelberg: Springer; 2007: 219-226.
  • 4 Cothren RM, Shekhar R, Tuzcu EM. et al. Three-dimensional reconstruction of the coronary artery wall by image fusion of intravascular ultrasound and bi-plane angiography. Int J Card Imaging 2000; 16: 69-85.
  • 5 Digital Imaging and Communications in Medicine (DICOM), Supplement 43:. Storage of 3D Ultrasound Images. ftp://medicalnemaorg/medical/dicom/final/sup43_ftpdf National Electrical Manufacturers Association (NEMA) 2008
  • 6 Eising EG, Jentzen W. Calcification-related absorption in thyroid scintigraphy. Nuklearmedizin 2010; 49: 13-18.
  • 7 Eliasziw M, Young SL, Woodbury MG, Frydayfield K. Statistical methodology for the concurrent assessment of interrater and intrarater reliability - Using goniometric measurements as an example. Phys Ther 1994; 74: 777-788.
  • 8 Elliott ST. Volume ultrasound: the next big thing?. Br J Radiol 2008; 81: 8-9.
  • 9 Ewertsen C, Grossjohann HS, Nielsen MB. Image fusion involving ultrasound. Ultraschall Med 2006; 27: 128-129.
  • 10 Hegedus L. Clinical practice. The thyroid nodule. N Engl J Med 2004; 351: 1764-1771.
  • 11 Huang X, Hill NA, Ren J. et al. Dynamic 3D ultrasound and MR image registration of the beating heart. Med Image Comput Comput Assist Interv 2005; 8: 171-178.
  • 12 Jung EM, Schreyer AG, Schacherer D. et al. New real-time image fusion technique for characterization of tumor vascularisation and tumor perfusion of liver tumors with contrast-enhanced ultrasound, spiral CT or MRI: first results. Clin Hemorheol Microcirc 2009; 43: 57-69.
  • 13 Kaplan I, Oldenburg NE, Meskell P. et al. Real time MRI-ultrasound image guided stereotactic prostate biopsy. Magn Reson Imaging 2002; 20: 295-299.
  • 14 Kiefer A, Kuwert T, Hahn D. et al. Anatomical accuracy of abdominal lesion localization. Retrospective automatic rigid image registration between FDG-PET and MRI. Nuklearmedizin 2011; 50: 147-154.
  • 15 Lyshchik A, Drozd V, Reiners C. Accuracy of three-dimensional ultrasound for thyroid volume measurement in children and adolescents. Thyroid 2004; 14: 113-120.
  • 16 Minami Y, Kudo M, Chung H. et al. Percutaneous radiofrequency ablation of sonographically unidentifiable liver tumors. Feasibility and usefulness of a novel guiding technique with an integrated system of computed tomography and sonographic images. Oncology 2007; 72 (Suppl. 01) 111-116.
  • 17 Nakano S, Yorozuya K, Takasugi M. et al. Real-time virtual sonography (RVS): a new virtual reality technique for detection of enhancing lesions on contrast-enhanced MR imaging of the breast by using sonography. Nihon Rinsho 2007; 65 (Suppl. 06) 304-309.
  • 18 Ozgen A, Erol C, Kaya A. et al. Interobserver and intraobserver variations in sonographic measurement of thyroid volume in children. Eur J Endocrinol 1999; 140: 328-331.
  • 19 Prager RW, Ijaz UZ, Gee AH, Treece GM. Three-dimensional ultrasound imaging. Proc Inst Mech Eng H 2010; 224: 193-223.
  • 20 Rago T, Bencivelli W, Scutari M. et al. The newly developed three-dimensional (3D) and two-dimensional (2D) thyroid ultrasound are strongly correlated, but 2D overestimates thyroid volume in the presence of nodules. J Endocrinol Invest 2006; 29: 423-426.
  • 21 Reinartz P, Sabri O, Zimny M. et al. Thyroid volume measurement in patients prior to radioiodine therapy: comparison between three-dimensional magnetic resonance imaging and ultrasonography. Thyroid 2002; 12: 713-717.
  • 22 Reynier C, Troccaz J, Fourneret P. et al. MRI/TRUS data fusion for prostate brachytherapy. Preliminary results. Med Phys 2004; 31: 1568-1575.
  • 23 Sandulescu L, Saftoiu A, Dumitrescu D, Ciurea T. Real-time contrast-enhanced and real-time virtual sonography in the assessment of benign liver lesions. J Gastrointestin Liver Dis 2008; 17: 475-478.
  • 24 Schlogl S, Werner E, Lassmann M. et al. The use of three-dimensional ultrasound for thyroid volumetry. Thyroid 2001; 11: 569-574.
  • 25 Sheth S. Role of ultrasonography in thyroid disease. Otolaryngol Clin North Am 2010; 43: 239-255.
  • 26 Sholosh B, Borhani AA. Thyroid ultrasound part 1: technique and diffuse disease. Radiol Clin North Am 2011; 49: 391-416.
  • 27 Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull 1979; 86: 420-428.
  • 28 Slapa RZ, Jakubowski WS, Slowinska-Srzednicka J, Szopinski KT. Advantages and disadvantages of 3D ultrasound of thyroid nodules including thin slice volume rendering. Thyroid Res 2011; 4: 1.
  • 29 Solberg OV, Lindseth F, Torp H. et al. Freehand 3D ultrasound reconstruction algorithms--a review. Ultrasound Med Biol 2007; 33: 991-1009.
  • 30 Steggerda M, Schneider C, van Herk M. et al. The applicability of simultaneous TRUS-CT imaging for the evaluation of prostate seed implants. Med Phys 2005; 32: 2262-2270.
  • 31 Tong S, Cardinal HN, McLoughlin RF. et al. Intra- and inter-observer variability and reliability of prostate volume measurement via two-dimensional and three-dimensional ultrasound imaging. Ultrasound Med Biol 1998; 24: 673-681.
  • 32 Walimbe V, Jaber WA, Garcia MJ, Shekhar R. Multimodality cardiac stress testing: combining real-time 3-dimensional echocardiography and myocardial perfusion SPECT. J Nucl Med 2009; 50: 226-230.
  • 33 Walimbe V, Zagrodsky V, Raja S. et al. Mutual information-based multimodality registration of cardiac ultrasound and SPECT images: a preliminary investigation. Int J Cardiovasc Imaging 2003; 19: 483-494.
  • 34 Wein W, Camus E, John M. et al. Towards guidance of electrophysiological procedures with real-time 3D intracardiac echocardiography fusion to C-arm CT. Med Image Comput Comput Assist Interv 2009; 12: 9-16.
  • 35 Wein W, Roper B, Navab N. Automatic registration and fusion of ultrasound with CT for radiotherapy. Med Image Comput Comput Assist Interv 2005; 8: 303-111.
  • 36 Weismann C, Hergan K. Aktueller Stand der 3D-/4D- Volumensonografie derMamma. Ultraschall Med 2007; 28: 273-282.
  • 37 Winter S, Brendel B, Igel C. Registrierung von Knochen in 3D- Ultraschall- und CT- Daten: Vergleich verschiedener Optimierungsverfahren. Meinzer H-P, Handels H, Horsch A, Tolxdorff T. Bildverarbeitung für die Medizin 2005.. Heidelberg: Springer; 2005: 345-349.
  • 38 Winter S, Brendel B, Rick A. et al. Registration of bone surfaces, extracted from CT-datasets, with 3D ultrasound. Biomed Tech (Berl) 2002; 47 (Suppl. 01) 57-60.
  • 39 Ying M, Yung DM, Ho KK. Two-dimensional ultrasound measurement of thyroid gland volume: a new equation with higher correlation with 3-D ultrasound measurement. Ultrasound Med Biol 2008; 34: 56-63.