Nuklearmedizin 2014; 53(04): 163-171
DOI: 10.3413/Nukmed-0662-14-04
Übersichtsarbeit
Schattauer GmbH

PET bei Gliomen

Eine Übersicht der aktuellen LiteraturPET in gliomasOverview of current studies
W.-D. Heiss
1   Max-Planck-Institut für Neurologische Forschung, Köln
› Author Affiliations
Further Information

Publication History

received: 15 April 2014

accepted in revised form: 20 May 2014

Publication Date:
02 January 2018 (online)

Zusammenfassung

Gliome, die 30% der intrakraniellen Tumoren darstellen, sind morphologische Veränderungen, sodass an erster Stelle der Diagnostik CT und MRT stehen, wobei MRT aufgrund der besseren Weichteilauflösung und zusätzlicher funktioneller Modalitäten (PWI, DWI, MRS) der Vorzug gegeben werden sollte. Mit diesen vor allem die Morphologie darstellenden bildgebenden Verfahren sind aber Aussagen über Malignitätsgrad, Infiltration und Effekte auf umgebendes Gewebe, Differenzierung zwischen Rezidiv und Nekrose, Prognose und Therapieeffekte nur eingeschränkt möglich.

Solche Aussagen können aus PET-Untersu- chungen des Glukosestoffwechsels mit FDG, der Aminosäurenaufnahme und der Proteinsynthese mit 11C-Methionin, 18F-Fluorethylty- rosin und 18F-Fluordeoxyphenylalanin und der Proliferationsrate mit 18F-Deoxythymidin getroffen werden. Durch die zunehmende Verfügbarkeit von 18Fluor-Tracern gewinnt der Einsatz der PET bei Gliomen an klinischer Bedeutung. In allen Anwendungen sollte eine Koregistrierung zu Ergebnissen aus morphologischen bildgebenden Verfahren erfolgen, wofür nun auch schon Hybridgeräte (PET- MR) zum Einsatz kommen.

Summary

Gliomas which represent 30% of intracranial tumours are morphologic lesions and therefore CT and MRI are the first line diagnostic procedures with MRI giving better soft tissue resolution and permitting additional functional information. These mainly morphologic imaging modalities yield only restricted information on grade of malignancy, on infiltration into and effects on surrounding brain tissue, on differentiation between necrotic and recurrent tumour, on prognosis and on efficacy of treatment.

Information on these important issues for patient management can be obtained by PET- studies of glucose metabolism with FDG, of aminoacid-uptake and protein synthesis with 11C-methionin, 18F-fluorethyltyrosin and 18F-fluor-deoxyphenylalanin and of proliferation by 18F-deoxythymidin. With the increasing availability of 18F-tracers PET has obtained wider spread clinical application. In all these applications a coregistration with morphologic imaging should be obtained, and for that purpose hybrid installations (PET- MR) are already being used.

 
  • Literatur

  • 1 Alexandru D, Bota DA, Linskey ME. Epidemiology of central nervous system metastases. Prog Neurol Surg 2012; 25: 13-29.
  • 2 Arbizu J, Tejada S, Marti-Climent JM. et al. Quantitative volumetric analysis of gliomas with sequential MRI and 11C-methionine PET assessment: patterns of integration in therapy planning. Eur J Nucl Med Mol Imaging 2012; 39: 771-781.
  • 3 Arvinda HR, Kesavadas C, Sarma PS. et al. Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol 2009; 94: 87-96.
  • 4 Becherer A, Karanikas G, Szabo M. et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [nC]methionine. Eur J Nucl Med Mol Imaging 2003; 30: 1561-1567.
  • 5 Bisdas S, Ritz R, Bender B. et al. Metabolic Mapping of Gliomas Using Hybrid MR-PET Imaging: Feasibility of the Method and Spatial Distribution of Metabolic Changes. Invest Radiol 2013; 48: 295-301.
  • 6 Boss A, Bisdas S, Kolb A. et al. Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med 2010; 51: 1198-1205.
  • 7 Calcagni ML, Galli G, Giordano A. et al. Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine (18F FET) PET for glioma grading: assessment of individual probability of malignancy. Clin Nucl Med 2011; 36: 841-847.
  • 8 Catana C, Drzezga A, Heiss WD. et al. PET/MRI for neurologic applications. J Nucl Med 2012; 53: 1916-1925.
  • 9 Chao ST, Suh JH, Raja S. et al. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 2001; 96: 191-197.
  • 10 Chen W. Clinical applications of PET in brain tumors. J Nucl Med 2007; 48: 1468-1481.
  • 11 Chen W, Silverman DH, Delaloye S. et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 2006; 47: 904-911.
  • 12 Chen W, Cloughesy T, Kamdar N. et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 2005; 46: 945-952.
  • 13 Chen W, Delaloye S, Silverman DH. et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 2007; 25: 4714-4721.
  • 14 Crippa F, Alessi A, Serafini GL. PET with radiolabeled aminoacid. Q J Nucl Med Mol Imaging 2012; 56: 151-162.
  • 15 Dandois V, Rommel D, Renard L. et al. substitution of 11C-methionine PET by perfusion MRI during the follow-up of treated high-grade gliomas: preliminary results in clinical practice. J Neuroradiol 2010; 37: 89-97.
  • 16 De Witte O, Goldberg I, Wikler D. et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 2001; 95: 746-750.
  • 17 Dhermain FG, Hau P, Lanfermann H. et al. Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol 2010; 9: 906-920.
  • 18 Dolecek TA, Propp JM, Stroup NE. et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro Oncol 2012; 14 (Suppl. 05) v1-v49.
  • 19 Dunet V, Rossier C, Buck A. et al. Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis. J Nucl Med 2012; 53: 207-214.
  • 20 Filss CP, Galldiks N, Stoffels G. et al. Comparison of 18F-FET PET and perfusion-weighted MR imaging: A PET/MR imaging hybrid study in patients with brain tumors. J Nucl Med 2014; 55: 540-545.
  • 21 Floeth FW, Pauleit D, Sabel M. et al. Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 2007; 48: 519-527.
  • 22 Floeth FW, Pauleit D, Wittsack HJ. et al. Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoro-ethyl-L-tyrosine and magnetic resonance spectroscopy. J Neurosurg 2005; 102: 318-327.
  • 23 Fueger BJ, Czernin J, Cloughesy T. et al. Correlation of 6-18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas. J Nucl Med 2010; 51: 1532-1538.
  • 24 Galldiks N, Langen KJ, Holy R. et al. Assessment of treatment response in patients with glioblastoma using O-(2-18F-fluoroethyl)-L-tyrosine PET in comparison to MRI. J Nucl Med 2012; 53: 1048-1057.
  • 25 Galldiks N, Kracht LW, Burghaus L. et al. Patient-tailored, imaging-guided, long-term temozolomide chemotherapy in patients with glioblastoma. Mol Imaging 2010; 9: 40-46.
  • 26 Galldiks N, Stoffels G, Ruge MI. et al. Role of O-(2-18F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med 2013; 54: 2046-2054.
  • 27 Glaudemans AW, Enting RH, Heesters MA. et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging 2013; 40: 615-635.
  • 28 Grosu AL, Astner ST, Riedel E. et al. An interindividual comparison of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-and L-[methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol Biol Phys 2011; 81: 1049-1058.
  • 29 Harris RJ, Cloughesy TF, Pope WB. et al. 18F-FDOPA and 18F-FLT positron emission tomography parametric response maps predict response in recurrent malignant gliomas treated with bevacizumab. Neuro Oncol 2012; 14: 1079-1089.
  • 30 Hatakeyama T, Kawai N, Nishiyama Y. et al. 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging 2008; 35: 2009-2017.
  • 31 Hattingen E, Raab P, Franz K. et al. Prognostic value of choline and creatine in WHO grade II gliomas. Neuroradiology 2008; 50: 759-767.
  • 32 Heinzel A, Stock S, Langen KJ. et al. Cost-effectiveness analysis of FET PET-guided target selection for the diagnosis of gliomas. Eur J Nucl Med Mol Imaging 2012; 39: 1089-1096.
  • 33 Heiss W-D, Raab P, Lanfermann H. Multimodality assessment of brain tumors and tumor recurrence. J Nucl Med 2011; 52: 1585-1600.
  • 34 Heiss W-D. The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging 2009; 36: 105-112.
  • 35 Heiss WD, Raab P, Lanfermann H. Multimodality assessment of brain tumors and tumor recurrence. J Nucl Med 2011; 52: 1585-1600.
  • 36 Herholz K, Langen KJ, Schlepers C. et al. Brain tumors. Semin Nucl Med 2012; 42: 356-370.
  • 37 Huang C, McConathy J. Radiolabeled amino acids for oncologic imaging. J Nucl Med 2013; 54: 1007-1010.
  • 38 Hutterer M, Nowosielski M, Putzer D. et al. [18F]-fluoro-ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro Oncol 2013; 15: 341-351.
  • 39 Idema AJ, Hoffmann AL, Boogaarts HD. et al. 3’-Deoxy-3’-18F-fluorothymidine PET-derived proliferative volume predicts overall survival in high-grade glioma patients. J Nucl Med 2012; 53: 1904-1910.
  • 40 Imani F, Boada FE, Lieberman FS. et al. Comparison of proton magnetic resonance spectroscopy with fluorine-18 2-fluoro-deoxyglucose positron emission tomography for assessment of brain tumor progression. J Neuroimaging 2012; 22: 184-190.
  • 41 Jackson RJ, Fuller GN, Abi-Said D. et al. Limitations of stereotactic biopsy in the initial management of gliomas. Neuro Oncol 2001; 3: 193-200.
  • 42 Jacobs A, Voges J, Reszka R. et al. Positronemission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 2001; 358: 727-729.
  • 43 Jacobs AH, Thomas A, Kracht LW. et al. 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. JNuclMed 2005; 46: 1948-1958.
  • 44 Jansen NL, Graute V, Armbruster L. et al. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET?. Eur J Nucl Med Mol Imaging 2012; 39: 1021-1029.
  • 45 Jansen NL, Suchorska B, Wenter V. et al. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J Nucl Med 2014; 55: 198-203.
  • 46 Jarzabek MA, Sweeney KJ, Evans RL. et al. Molecular imaging in the development of a novel treatment paradigm for glioblastoma (GBM): an integrated multidisciplinary commentary. Drug Discov Today 2013; 18: 1052-1066.
  • 47 Jeong SY, Lim SM. Comparison of 3’-deoxy-3’-[18F]fluorothymidine PET and O-(2-[18F]-fluoroethyl)-L-tyrosine PET in patients with newly diagnosed glioma. Nucl Med Biol 2012; 39: 977-981.
  • 48 Kinoshita M, Arita H, Goto T. et al. A novel PET index, 18F-FDG-11C-methionine uptake decoupling score, reflects glioma cell infiltration. J Nucl Med 2012; 53: 1701-1708.
  • 49 Kracht L, Friese M, Herholz K. et al. Methyl-(11C)-L-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 2003; 30: 868-873.
  • 50 Kracht LW, Miletic H, Busch S. et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 2004; 10: 7163-7170.
  • 51 Kratochwil C, Combs SE, Leotta K. et al. Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors. Neuro Oncol 2014; 16: 434-440.
  • 52 La Fougere C, Suchorska B, Bartenstein P. et al. Molecular imaging of gliomas with PET: opportunities and limitations. Neuro Oncol 2011; 13: 806-819.
  • 53 Langen KJ, Bartenstein P, Boecker H. et al. German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids. Nuklearmedizin 2011; 50: 167-173.
  • 54 Langleben DD, Segall GM. PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 2000; 41: 1861-1867.
  • 55 Law M, Young RJ, Babb JS. et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2008; 247: 490-498.
  • 56 Louis DN, Ohgaki H, Wiestler OD. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114: 97-109.
  • 57 Moulin-Romsee G, D’Hondt E, de Groot T. et al. Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine?. Eur J Nucl Med Mol Imaging 2007; 34: 2082-2087.
  • 58 Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuro-pathol Exp Neurol 2005; 64: 479-489.
  • 59 Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA 2013; 310: 1842-1850.
  • 60 Pafundi DH, Laack NN, Youland RS. et al. Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study. Neuro Oncol 2013; 15: 1058-1067.
  • 61 Pauleit D, Floeth F, Hamacher K. et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128: 678-687.
  • 62 Paulus W, Peiffer J. Intratumoral histologic heterogeneity of gliomas. A quantitative study. Cancer 1989; 64: 442-447.
  • 63 Pirotte B, Goldman S, Massager N. et al. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 2004; 45: 1293-1298.
  • 64 Pirotte BJ, Levivier M, Goldman S. et al. Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery 2009; 64: 471-481.
  • 65 Popperl G, Gotz C, Rachinger W. et al. Value of O-(2-[18F]fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 2004; 31: 1464-1470.
  • 66 Popperl G, Kreth FW, Mehrkens JH. et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 2007; 34: 1933-1942.
  • 67 Prieto E, Marti-Climent JM, Dominguez-Prado I. et al. Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med 2011; 52: 865-872.
  • 68 Rahm V, Boxheimer L, Bruehlmeier M. et al. Focal changes in diffusivity on apparent diffusion coefficient MR imaging and amino acid uptake on PET do not colocalize in nonenhancing low-grade gliomas. J Nucl Med 2014; 55: 546-550.
  • 69 Rapp M, Heinzel A, Galldiks N. et al. Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma. J Nucl Med 2013; 54: 229-235.
  • 70 Ribom D, Smits A. Baseline 11C-methionine PET reflects the natural course of grade 2 oligodend-rogliomas. Neurol Res 2005; 27: 516-521.
  • 71 Ribom D, Eriksson A, Hartman M. et al. Positron emission tomography 11C-methionine and survival in patients with low-grade gliomas. Cancer 2001; 92: 1541-1549.
  • 72 Santra A, Kumar R, Sharma P. et al. F-18 FDG PET-CT in patients with recurrent glioma: comparison with contrast enhanced MRI. Eur J Radiol 2012; 81: 508-513.
  • 73 Schlemmer H-P, Pichler BJ, Krieg R. et al. An integrated MR/PET system: prospective applications. Abdom Imaging 2009; 34: 668-674.
  • 74 Schwarzenberg J, Czernin J, Cloughesy TF. et al. 3’-deoxy-3’-18F-fluorothymidine PET and MRI for early survival predictions in patients with recurrent malignant glioma treated with bevacizumab. J Nucl Med 2012; 53: 29-36.
  • 75 Shinomiya A, Kawai N, Okada M. et al. Evaluation of 3’-deoxy-3’-[18F]-fluorothymidine (18F-FLT) kinetics correlated with thymidine kinase-1 expression and cell proliferation in newly diagnosed gliomas. Eur J Nucl Med Mol Imaging 2013; 40: 175-185.
  • 76 Singhal T, Narayanan TK, Jain V. et al. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 2008; 10: 1-18.
  • 77 Singhal T, Narayanan TK, Jacobs MP. et al. nC-methionine PET for grading and prognostication in gliomas: a comparison study with 18F-FDG PET and contrast enhancement on MRI. J Nucl Med 2012; 53: 1709-1715.
  • 78 Smits A, Baumert BG. The clinical value of PET with amino acid tracers for gliomas WHO grade II. Int J Mol Imaging 2011; 2011: 372509.
  • 79 Spence AM, Muzi M, Mankoff DA. et al. 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 2004; 45: 1653-1659.
  • 80 Tanaka Y, Nariai T, Momose T. et al. Glioma surgery using a multimodal navigation system with integrated metabolic images. J Neurosurg 2009; 110: 163-172.
  • 81 Tang BN, Sadeghi N, Branle F. et al. Semi-quantification of methionine uptake and flair signal for the evaluation of chemotherapy in low-grade oligodendroglioma. J Neurooncol 2005; 71: 161-168.
  • 82 Terakawa Y, Tsuyuguchi N, Iwai Y. et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 2008; 49: 694-699.
  • 83 Tralins KS, Douglas JG, Stelzer KJ. et al. Volumetric analysis of 18F-FDG PET in glioblastoma multiforme: prognostic information and possible role in definition of target volumes in radiation dose escalation. J Nucl Med 2002; 43: 1667-1673.
  • 84 Tripathi M, Sharma R, Varshney R. et al. Comparison of F-18 FDG and C-11 methionine PET/CT for the evaluation of recurrent primary brain tumors. Clin Nucl Med 2012; 37: 158-163.
  • 85 Tripathi M, Sharma R, D’Souza M. et al. Comparative evaluation of F-18 FDOPA, F-18 FDG, and F-18 FLT-PET/CT for metabolic imaging of low grade gliomas. Clin Nucl Med 2009; 34: 878-883.
  • 86 Tsuyuguchi N, Takami T, Sunada I. et al. Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery–in malignant glioma. Ann Nucl Med 2004; 18: 291-296.
  • 87 Ullrich R, Backes H, Li H. et al. Glioma proliferation as assessed by 3’-fluoro-3’-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res 2008; 14: 2049-2055.
  • 88 Ullrich RT, Kracht L, Brunn A. et al. Methyl-L-11C-methionine PET as a diagnostic marker for malignant progression in patients with glioma. J Nucl Med 2009; 50: 1962-1968.
  • 89 Van Laere K, Ceyssens S, Van Calenbergh F. et al. Direct comparison of 18F-FDG and nC-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 2005; 32: 39-51.
  • 90 Weber DC, Zilli T, Buchegger F. et al. [18F]Fluoro-ethyltyrosine-positron emission tomography-guided radiotherapy for high-grade glioma. Radiat Oncol 2008; 3: 44.
  • 91 Weber WA, Wester HJ, Grosu AL. et al. O-(2-[18F]-fluoroethyl)-L-tyrosine and L-[methyl-nC]-methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 2000; 27: 542-549.
  • 92 Wyss M, Hofer S, Bruehlmeier M. et al. Early metabolic responses in temozolomide treated low-grade glioma patients. J Neurooncol 2009; 95: 87-93.
  • 93 Yamamoto Y, Ono Y, Aga F. et al. Correlation of 18F-FLT uptake with tumor grade and Ki-67 immunohistochemistry in patients with newly diagnosed and recurrent gliomas. J Nucl Med 2012; 53: 1911-1915.
  • 94 Yang P, Wang Y, Peng X. et al. Management and survival rates in patients with glioma in China (2004-2010): a retrospective study from a singleinstitution. J Neurooncol 2013; 113: 259-266.