Diabetologie und Stoffwechsel 2020; 15(06): 443-446
DOI: 10.1055/a-1247-1099
DDG-Preisträger

Epigenetische Mechanismen bei Adipositas: Finetuning der Genaktivität durch DNA-Methylierung – Bertram-Preis 2020 – eine Kurzübersicht der Preisträgerin Yvonne Böttcher

Yvonne Böttcher
1   Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
2   Medical Division, Akershus University Hospital, Lørenskog, Norway
3   Integriertes Forschungs- und Behandlungszentrum (IFB) AdipositasErkrankungen, Universitätsmedizin Leipzig, Leipzig
4   Helmholtz-Institut für Metabolismus-, Adipositas- und Gefäßforschung (HI-MAG) des Helmholtz Zentrums München an der Universität Leipzig und dem Universitätsklinikum Leipzig, Leipzig (als Gastwissenschaftlerin)
› Institutsangaben

Adipositas und ihre metabolischen Begleiterkrankungen wie Typ-2-Diabetes (T2 D), Bluthochdruck und Dyslipidämie zählen zu den häufigsten Volkskrankheiten weltweit [1], und ihre Therapie belastet die nationalen Gesundheitssysteme enorm. Die Häufigkeit von Adipositas hat sich in den letzten Jahrzehnten dramatisch erhöht [2] und ist Folge eines Zusammenspiels zwischen genetischer Veranlagung und ungünstigen Umwelteinflüssen (z. B. energiedichte Ernährung, mangelnde Bewegung; [Abb. 1]). Neben dem Body-Mass-Index (BMI) ist die Körperfettverteilung ein wichtiger Prädiktor für das Risiko, an metabolischen Komorbiditäten zu erkranken. So ist insbesondere die viszeral betonte Adipositas häufiger mit Sekundärerkrankungen verbunden [3] [4].



Publikationsverlauf

Artikel online veröffentlicht:
08. Dezember 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Ng M, Fleming T, Robinson M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384: 766-781
  • 2 NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017; 390: 2627-2642
  • 3 Matsuzawa Y, Shimomura I, Nakamura T. et al. Pathophysiology and pathogenesis of visceral fat obesity. Ann N YAcad Sci 1995; 748: 399-406
  • 4 Despres JP, Nadeau A, Tremblay A. et al. Role of deep abdominal fat in the association between regional adipose tissue distribution and glucose tolerance in obese women. Diabetes 1989; 38: 304-309
  • 5 Locke AE, Kahali B, Berndt SI. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015; 518: 197-206
  • 6 Yengo L, Sidorenko J, Kemper KE. et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700 000 individuals of European ancestry. Hum Mol Genet 2018; 27: 3641-3649
  • 7 Manolio TA, Collins FS, Cox NJ. et al. Finding the missing heritability of complex diseases. Nature 2009; 461: 747-753
  • 8 Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev 2011; 25: 1010-1022
  • 9 Weber M, Schubeler D. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol 2007; 19: 273-280
  • 10 Wahl S, Drong A, Lehne B. et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 2017; 541: 81-86
  • 11 Dick KJ, Nelson CP, Tsaprouni L. et al. DNA methylation and body-mass index: a genome-wide analysis. The Lancet 2014; 383: 1990-1998
  • 12 Main AM, Gillberg L, Jacobsen AL. et al. DNA methylation and gene expression of HIF3A: cross-tissue validation and associations with BMI and insulin resistance. Clinical epigenetics 2016; 8: 89
  • 13 Pfeiffer S, Kruger J, Maierhofer A. et al. Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction. Sci Rep 2016; 6: 27969
  • 14 Richmond RC, Sharp GC, Ward ME. et al. DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework. Diabetes 2016; 65: 1231-1244
  • 15 Ronn T, Volkov P, Gillberg L. et al. Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum Mol Genet 2015; 24: 3792-3813
  • 16 Dahlman I, Sinha I, Gao H. et al. The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes. Int J Obes 2015; 39: 910-919
  • 17 Arner P, Sinha I, Thorell A. et al. The epigenetic signature of subcutaneous fat cells is linked to altered expression of genes implicated in lipid metabolism in obese women. Clinical epigenetics 2015; 7: 93
  • 18 Kvaløy K, Page CM, Holmen TL. Epigenome-wide methylation differences in a group of lean and obese women – A HUNT Study. Sci Rep 2018; 8: 16330
  • 19 Orozco LD, Farrell C, Hale C. et al. Epigenome-wide association in adipose tissue from the METSIM cohort. Hum Mol Genet 2018; 27: 1830-1846
  • 20 Keller M, Hopp L, Liu X. et al. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity. Mol Metab 2016; 6: 86-100
  • 21 Keller M, Kralisch S, Rohde K. et al. Global DNA methylation levels in human adipose tissue are related to fat distribution and glucose homeostasis. Diabetologia 2014; 57: 2374-2383
  • 22 Guenard F, Tchernof A, Deshaies Y. et al. Differential methylation in visceral adipose tissue of obese men discordant for metabolic disturbances. Physiological genomics 2014; 46: 216-222
  • 23 Guenard F, Tchernof A, Deshaies Y. et al. Genetic regulation of differentially methylated genes in visceral adipose tissue of severely obese men discordant for the metabolic syndrome. Translational research 2017; 184: 1-11.e2
  • 24 Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 2006; 444: 881-887
  • 25 Rönn T, Volkov P, Davegårdh C. et al. A Six Months Exercise Intervention Influences the Genome-wide DNA Methylation Pattern in Human Adipose Tissue. PLoS Genetics 2013; 9: e1003572
  • 26 Rohde K, Keller M, la Cour Poulsen L. et al. Genetics and epigenetics in obesity. Metabolism 2019; 92: 37-50
  • 27 Houde AA, Legare C, Biron S. et al. Leptin and adiponectin DNA methylation levels in adipose tissues and blood cells are associated with BMI, waist girth and LDL-cholesterol levels in severely obese men and women. BMC Med Genet 2015; 16: 29
  • 28 Hjort L, Jorgensen SW, Gillberg L. et al. 36 h fasting of young men influences adipose tissue DNA methylation of LEP and ADIPOQ in a birth weight-dependent manner. Clin Epigenetics 2017; 9: 40
  • 29 Millington GW. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr Metab 2007; 4: 18
  • 30 Kuehnen P, Mischke M, Wiegand S. et al. An Alu element-associated hypermethylation variant of the POMC gene is associated with childhood obesity. PLoS Genet 2012; 8: e1002543
  • 31 Kuhnen P, Handke D, Waterland RA. et al. Interindividual Variation in DNA Methylation at a Putative POMC Metastable Epiallele Is Associated with Obesity. Cell Metab 2016; 24: 502-509
  • 32 Milagro FI, Gomez-Abellan P. et al. CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int 2012; 29: 1180-1194
  • 33 Samblas M, Milagro FI, Mansego ML. et al. PTPRS and PER3 methylation levels are associated with childhood obesity: results from a genome-wide methylation analysis. Pediatr Obes 2018; 13: 149-158
  • 34 Ramos-Lopez O, Samblas M, Milagro FI. et al. Circadian gene methylation profiles are associated with obesity, metabolic disturbances and carbohydrate intake. Chronobiol Int 2018; 35: 1-13
  • 35 Hermsdorff HH, Mansego ML, Campion J. et al. TNF-alpha promoter methylation in peripheral white blood cells: relationship with circulating TNFalpha, truncal fat and n-6 PUFA intake in young women. Cytokine 2013; 64: 265-271
  • 36 Perfilyev A, Dahlman I, Gillberg L. et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. The American journal of clinical nutrition 2017; 105: 991-1000
  • 37 Lima RPA, do Nascimento RAF, Luna RCP. et al. Effect of a diet containing folate and hazelnut oil capsule on the methylation level of the ADRB3 gene, lipid profile and oxidative stress in overweight or obese women. Clin Epigenetics 2017; 9: 110
  • 38 Rohde K, Keller M, Klös M. et al. Adipose tissue depot specific promoter methylation of TMEM18. Journal of Molecular Medicine 2014; 92: 881-888
  • 39 Willer CJ, Speliotes EK, Loos RJ. et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 2009; 41: 25-34
  • 40 Keller M, Klös M, Rohde K. et al. DNA methylation of SSPN is linked to adipose tissue distribution and glucose metabolism. Faseb J 2018; DOI: fj201800528R.
  • 41 Heid IM, Jackson AU, Randall JC. et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 2010; 42: 949-960
  • 42 Rohde K, Klös M, Hopp L. et al. IRS1 DNA promoter methylation and expression in human adipose tissue are related to fat distribution and metabolic traits. Scientific reports 2017; 7: 12369