Diabetologie und Stoffwechsel 2024; 19(S 02): S416-S426
DOI: 10.1055/a-2312-0058
DDG-Praxisempfehlung

Empfehlungen zur Ernährungsprävention des Typ-2-Diabetes mellitus

Thomas Skurk
1   ZIEL – Institute for Food & Health, Core Facility Humanstudien, Technische Universität München, Freising, Deutschland
,
Arthur Grünerbel
2   Diabeteszentrum München Süd, München, Deutschland
,
Sandra Hummel1
3   Institut für Diabetesforschung, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, München-Neuherberg, Deutschland
,
Stefan Kabisch
4   Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke, Potsdam, Deutschland
,
Winfried Keuthage
5   Schwerpunkpraxis für Diabetes und Ernährungsmedizin, Münster, Deutschland
,
Karsten Müssig
6   Klinik für Innere Medizin, Gastroenterologie und Diabetologie, Niels-Stensen-Kliniken, Franziskus-Hospital Harderberg, Georgsmarienhütte, Deutschland
,
Helmut Nussbaumer
7   Diabetologikum Burghausen, Burghausen, Deutschland
,
Diana Rubin
8   Vivantes Klinikum Spandau, Berlin, Deutschland
9   Vivantes Humboldt Klinikum, Berlin, Deutschland
,
Marie-Christine Simon
10   Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Deutschland
,
Astrid Tombek
11   Diabetes-Klinik Bad Mergentheim, Bad Mergentheim, Deutschland
,
Katharina S. Weber
12   Institut für Epidemiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Deutschland
,
für den Ausschuss Ernährung der DDG › Author Affiliations
Aktualisierungshinweis

Die DDG-Praxisempfehlungen werden regelmäßig zur zweiten Jahreshälfte aktualisiert. Bitte stellen Sie sicher, dass Sie jeweils die neueste Version lesen und zitieren.

Inhaltliche neuerungen gegenüber der Vorjahresfassung

Neuerung 1: Hinweis, dass digitale Diabetes-Präventionsprogramme (dDPP) relevante Kostenersparnisse ermöglichen (Kapitel 1.2.2)

Begründung: Neue Literatur [96]

Neuerung 2: Hinweis, dass sich solche dDPPs vor allem in unterversorgten Gegenden bei Prädiabetes anbieten (Kapitel 1.2.2)

Begründung: Neue Literatur [97]

1 Für die Arbeitsgruppe Diabetes & Schwangerschaft der DDG.




Publication History

Article published online:
21 November 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Skurk T, Bosy-Westphal A, Grünerbel A. et al. Dietary recommendations for persons with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2022; 130 (Suppl. 01) S151-S184
  • 2 Benziger CP, Roth GA, Moran AE. The Global Burden of Disease Study and the Preventable Burden of NCD. Global heart 2016; 11: 393-397
  • 3 Uusitupa M, Khan TA, Viguiliouk E. et al. Prevention of Type 2 Diabetes by Lifestyle Changes: A Systematic Review and Meta-Analysis. Nutrients 2019; 11: 2611
  • 4 Haw JS, Galaviz KI, Straus AN. et al. Long-term Sustainability of Diabetes Prevention Approaches: A Systematic Review and Meta-analysis of Randomized Clinical Trials. JAMA Intern Med 2017; 177: 1808-1817
  • 5 Howell S, Kones R. “Calories in, calories out” and macronutrient intake: the hope, hype, and science of calories. Am J Physiol Endocrinol Metab 2017; 313: E608-E612
  • 6 Willett W, Rockström J, Loken B. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019; 393: 447-492
  • 7 Nelson ME, Hamm MW, Hu FB. et al. Alignment of Healthy Dietary Patterns and Environmental Sustainability: A Systematic Review. Adv Nutr 2016; 7: 1005-1025
  • 8 Poole MK, Musicus AA, Kenney EL. Alignment Of US School Lunches With The EAT-Lancet Healthy Reference Diet’s Standards For Planetary Health. Health Aff (Millwood) 2020; 39: 2144-2152
  • 9 Goulding T, Lindberg R, Russell CG. The affordability of a healthy and sustainable diet: an Australian case study. Nutr J 2020; 19: 109
  • 10 Breidenassel C, Schäfer AC, Micka M. et al. The Planetary Health Diet in contrast to the food-based dietary guidelines of the German Nutrition Society (DGE). A DGE statement. Ernahrungs Umschau 2022; 59: 56-72.e1-3
  • 11 Laine JE, Huybrechts I, Gunter MJ. et al. Co-benefits from sustainable dietary shifts for population and environmental health: an assessment from a large European cohort study. Lancet Planet Health 2021; 5: e786-e796
  • 12 López GE, Batis C, González C. et al. EAT-Lancet Healthy Reference Diet score and diabetes incidence in a cohort of Mexican women. Eur J Clin Nutr 2023; 77: S348-S355
  • 13 Knuppel A, Papier K, Key TJ. et al. EAT-Lancet score and major health outcomes: the EPIC-Oxford study. Lancet 2019; 394: 213-214
  • 14 Xu C, Cao Z, Yang H. et al. Association Between the EAT-Lancet Diet Pattern and Risk of Type 2 Diabetes: A Prospective Cohort Study. Front Nutr 2022; 8: 784018
  • 15 Zhang S, Stubbendorff A, Olsson K. et al. Adherence to the EAT-Lancet diet, genetic susceptibility, and risk of type 2 diabetes in Swedish adults. Metabolism 2023; 141: 155401
  • 16 Langmann F, Ibsen DB, Tjønneland A. et al. Adherence to the EAT-Lancet diet is associated with a lower risk of type 2 diabetes: the Danish Diet, Cancer and Health cohort. Eur J Nutr 2023; 62: 1493-1502
  • 17 Ojo O, Jiang Y, Ojo O. et al. The Association of Planetary Health Diet with the Risk of Type 2 Diabetes and Related Complications: A Systematic Review. Healthcare (Basel) 2023; 11: 1120
  • 18 OECD: Health at a Glance 2021: OECD Indicators. Accessed June 06, 2023 at: https://www.oecd.org/health/health-at-a-glance/
  • 19 Mensink GBM, Schienkiewitz A, Haftenberger M. et al. Übergewicht und Adipositas in Deutschland: Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2013; 56: 786-794
  • 20 Tuomilehto J, Lindström J, Eriksson JG. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344: 1343-1350
  • 21 Knowler WC, Barrett-Connor E, Fowler SE. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393-403
  • 22 Deedwania PC, Volkova N. Current Treatment Options for the Metabolic Syndrome. Curr Treat Options Cardiovasc Med 2005; 7: 61-74
  • 23 UK Prospective Diabetes Study 7: response of fasting plasma glucose to diet therapy in newly presenting type II diabetic patients, UKPDS Group. Metabolism 1990; 39: 905-912
  • 24 Goodpaster BH, Krishnaswami S, Resnick H. et al. Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care 2003; 26: 372-379
  • 25 Evert AB, Dennison M, Gardner CD. et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019; 42: 731-754
  • 26 Klein S, Sheard NF, Pi-Sunyer X. et al. Weight management through lifestyle modification for the prevention and management of type 2 diabetes: rationale and strategies. A statement of the American Diabetes Association, the North American Association for the Study of Obesity, and the American Society for Clinical Nutrition. Am J Clin Nutr 2004; 80: 257-263
  • 27 National Task Force on the Prevention and Treatment of Obesity, National Institutes of Health. Very low-calorie diets. JAMA 1993; 270: 967-974
  • 28 Churuangsuk C, Hall J, Reynolds A. et al. Diets for weight management in adults with type 2 diabetes: an umbrella review of published meta-analyses and systematic review of trials of diets for diabetes remission. Diabetologia 2022; 65: 14-36
  • 29 Miller CK, Nagaraja HN, Cheavens J. et al. Impact of a Novel Diabetes Prevention Intervention for Early Slow Weight Loss Responders Among Adults With Prediabetes: An Adaptive Trial. Diabetes Care 2022; 45: 2452-2455
  • 30 Branch OH, Rikhy M, Auster-Gussman LA. et al. Weight loss and modeled cost savings in a digital diabetes prevention program. Obes Sci Pract 2023; 9: 404-415
  • 31 Graham SA, Auster-Gussman LA, Lockwood KG. et al. Weight Loss in a Digital Diabetes Prevention Program for People in Health Professional Shortage and Rural Areas. Popul Health Manag 2023; 26: 149-156
  • 32 Graham SA, Pitter V, Hori JH. et al. Weight loss in a digital app-based diabetes prevention program powered by artificial intelligence. Digit Health 2022; 8
  • 33 LaPointe S, Merrill M. Weight loss and lifestyle change among high-risk individuals enrolled in a digital diabetes prevention program: A longitudinal study of private and public health insurance members in Western New York. Prev Med Rep 2023; 36: 102507
  • 34 Mayhew M, Smith N, Fortmann SP. et al. Mental health diagnosis attenuates weight loss among older adults in a digital diabetes prevention program. Obes Sci Pract 2022; 9: 320-326
  • 35 Bundesärztekammer. Telemedizinische Methoden in der Patientenversorgung – Begriffliche Verortung 2015. Accessed June 06, 2023 at: https://www.bundesaerztekammer.de/fileadmin/user_upload/_old-files/downloads/pdf-Ordner/Telemedizin_Telematik/Telemedizin/Telemedizinische_Methoden_in_der_Patientenversorgung_Begriffliche_Verortung.pdf
  • 36 Kempf K, Altpeter B, Berger J. et al. Efficacy of the Telemedical Lifestyle intervention Program TeLiPro in Advanced Stages of Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care 2017; 40: 863-871
  • 37 Su D, McBride C, Zhou J. et al. Does nutritional counseling in telemedicine improve treatment outcomes for diabetes? A systematic review and metaanalysis of results from 92 studies. J Telemed Telecare 2016; 22: 333-347
  • 38 Halvorsen RE, Elvestad M, Molin M. et al. Fruit and vegetable consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of prospective studies. BMJ Nutr Prev Health 2021; 4: 519-531
  • 39 Li M, Fan Y, Zhang X. et al. Fruit and vegetable intake and risk of type 2 diabetes mellitus: meta-analysis of prospective cohort studies. BMJ Open 2014; 4: e005497
  • 40 Satija A, Bhupathiraju SN, Rimm EB. et al. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies. PLoS Med 2016; 13: e1002039
  • 41 Hughes J, Pearson E, Grafenauer S. Legumes – A Comprehensive Exploration of Global Food-Based Dietary Guidelines and Consumption. Nutrients 2022; 14: 3080
  • 42 Pearce M, Fanidi A, Bishop TRP. et al. Associations of Total Legume, Pulse, and Soy Consumption with Incident Type 2 Diabetes: Federated Meta-Analysis of 27 Studies from Diverse World Regions. J Nutr 2021; 151: 1231-1240
  • 43 Papakonstantinou E, Galanopoulos K, Kapetanakou AE. et al. Short-Term Effects of Traditional Greek Meals: Lentils with Lupins, Trahana with Tomato Sauce and Halva with Currants and Dried Figs on Postprandial Glycemic Responses-A Randomized Clinical Trial in Healthy Humans. Int J Environ Res Public Health 2022; 19: 11502
  • 44 Afshin A, Micha R, Khatibzadeh S. et al. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr 2014; 100: 278-288
  • 45 George ES, Daly RM, Tey SL. et al. Perspective: Is it Time to Expand Research on “Nuts” to Include “Seeds”? Justifications and Key Considerations. Adv Nutr 2022; 13: 1016-1027
  • 46 Blanco MejiaS, Kendall CWC, Viguiliouk E. et al. Effect of tree nuts on metabolic syndrome criteria: a systematic review and meta-analysis of randomised controlled trials. BMJ Open 2014; 4: e004660
  • 47 Martínez-González MA, García-Arellano A, Toledo E. et al. A 14-item Mediterranean diet assessment tool and obesity indexes among high-risk subjects: the PREDIMED trial. PloS One 2012; 7: e43134
  • 48 Johnston BC, Zeraatkar D, Han MA. et al. Unprocessed Red Meat and Processed Meat Consumption: Dietary Guideline Recommendations From the Nutritional Recommendations (NutriRECS) Consortium. Ann Intern Med 2019; 171: 756-764
  • 49 Deutsche Diabetes Gesellschaft (DDG) und diabetesDE – Deutsche Diabetes-Hilfe Hrsg. Deutscher Gesundheitsbericht Diabetes 2021. Die Bestandsaufnahme. https://www.diabetesde.org/system/files/documents/20201107_gesundheitsbericht2021.pdf
  • 50 Pan XR, Li GW, Hu YH. et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 1997; 20: 537-544
  • 51 Ramachandran A, Snehalatha C, Mary S. et al. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 2006; 49: 289-297
  • 52 Uusitupa M, Louheranta A, Lindström J. et al. The Finnish Diabetes Prevention Study. Br J Nutr 2000; 83 (Suppl. 01) S137-S142
  • 53 Dyson PA, Twenefour D, Breen C. et al. Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabet Med 2018; 35: 541-547
  • 54 Imamura F, O’Connor L, Ye Z. et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 2015; 351: h3576
  • 55 ElSayed NA, Aleppo G, Aroda VR. et al. Summary of Revisions: Standards of Care in Diabetes-2023. Diabetes Care 2023; 46 (Suppl. 01) S5-S9
  • 56 Khalili L, A-Elgadir TME, Mallick AK. et al. Nuts as a Part of Dietary Strategy to Improve Metabolic Biomarkers: A Narrative Review. Front Nutr 2022; 9: 881843
  • 57 GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018; 392: 1015-1035
  • 58 Kulzer B, Albus C, Herpertz S. et al. Psychosoziales und Diabetes. Diabetol Stoffwechs 2024; 19 (Suppl. 02) S378-S394
  • 59 Snijder MB, van der Heijden AA, van Dam RM. et al. Is higher dairy consumption associated with lower body weight and fewer metabolic disturbances? The Hoorn Study. Am J Clin Nutr 2007; 85: 989-995
  • 60 Soedamah-Muthu SS, Ding EL, Al-Delaimy WK. et al. Milk and dairy consumption and incidence of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Am J Clin Nutr 2011; 93: 158-171
  • 61 Pereira MA, Jacobs DR, van Horn L. et al. Dairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA Study. JAMA 2022; 287: 2081-2089
  • 62 Azadbakht L, Mirmiran P, Esmaillzadeh A. et al. Dairy consumption is inversely associated with the prevalence of the metabolic syndrome in Tehranian adults. Am J Clin Nutr 2005; 82: 523-530
  • 63 Elwood PC, Givens DI, Beswick AD. et al. The survival advantage of milk and dairy consumption: an overview of evidence from cohort studies of vascular diseases, diabetes and cancer. J Am Coll Nutr 2008; 27: 723S-734S
  • 64 Ferland A, Lamarche B, Château-Degat ML. et al. Dairy product intake and its association with body weight and cardiovascular disease risk factors in a population in dietary transition. J Am Coll Nutr 2011; 30: 92-99
  • 65 Margolis KL, Wei F, de Boer ICH. et al. A diet high in low-fat dairy products lowers diabetes risk in postmenopausal women. J Nutr 2011; 141: 1969-1974
  • 66 Wennersberg MH, Smedman A, Turpeinen AM. et al. Dairy products and metabolic effects in overweight men and women: results from a 6-mo intervention study. Am J Clin Nutr 2009; 90: 960-968
  • 67 Wannamethee SG, Hu FB. Obesity Epidemiology. Int J Epidemiol 2009; 38: 325-326
  • 68 Tremblay A, Gilbert JA. Milk products, insulin resistance syndrome and type 2 diabetes. J Am Coll Nutr 2009; 28 (Suppl. 01) 91S-102S
  • 69 McGlynn ND, Khan TA, Wang L. et al. Association of Low- and No-Calorie Sweetened Beverages as a Replacement for Sugar-Sweetened Beverages With Body Weight and Cardiometabolic Risk: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5: e222092
  • 70 Lee JJ, Khan TA, McGlynn N. et al. Relation of Change or Substitution of Low- and No-Calorie Sweetened Beverages With Cardiometabolic Outcomes: A Systematic Review and Meta-analysis of Prospective Cohort Studies. Diabetes Care 2022; 45: 1917-1930
  • 71 Rogers PJ, Appleton KM. The effects of low-calorie sweeteners on energy intake and body weight: a systematic review and meta-analyses of sustained intervention studies. Int J Obes (Lond) (2005) 2021; 45: 464-478
  • 72 Mazi TA, Stanhope KL. Erythritol. An In-Depth Discussion of Its Potential to Be a Beneficial Dietary Component. Nutrients 2023; 15: 204
  • 73 Tiwaskar M, Mohan V. Clearing the Myths around non-nutritive/noncaloric Sweeteners: An Efficacy and Safety Evaluation. J Assoc Physicians India 2022; 70: 11-12
  • 74 Daher MI, Matta JM, Abdel N. et al. Non-nutritive sweeteners and type 2 diabetes: Should we ring the bell?. Diabetes Res Clin Pract 2019; 155: 107786
  • 75 O’Connor D, Pang M, Castelnuovo G. et al. A rational review on the effects of sweeteners and sweetness enhancers on appetite, food reward and metabolic/adiposity outcomes in adults. Food Funct 2021; 12: 442-465
  • 76 Suez J, Cohen Y, Valdés-Mas R. et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 2022; 185: 3307-3328.e19
  • 77 Bayındır GümüşA, Keser A, Tunçer E. et al. Effect of saccharin, a nonnutritive sweeteners, on insulin and blood glucose levels in healthy young men: A crossover trial. Diabetes Metab Syndr 2022; 16: 102500
  • 78 Meng Y, Li S, Khan J. et al. Sugar- and Artificially Sweetened Beverages Consumption Linked to Type 2 Diabetes, Cardiovascular Diseases, and All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutrients 2021; 13: 2636
  • 79 Neuenschwander M, Ballon A, Weber K. et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ 2019; 366: l2368
  • 80 Neuenschwander M, Barbaresko J, Pischke CR. et al. Intake of dietary fats and fatty acids and the incidence of type 2 diabetes: A systematic review and dose-response meta-analysis of prospective observational studies. PLoS Med 2020; 17: e1003347
  • 81 Li J, Glenn AJ, Yang Q. et al. Dietary Protein Sources, Mediating Biomarkers, and Incidence of Type 2 Diabetes: Findings From the Women’s Health Initiative and the UK Biobank. Diabetes Care 2022; 45: 1742-1753
  • 82 Schlesinger S. Diet and Diabetes Prevention: Is a Plant-Based Diet the Solution?. Diabetes Care 2023; 46: 6-8
  • 83 Qian F, Liu G, Hu FB. et al. Association Between Plant-Based Dietary Patterns and Risk of Type 2 Diabetes: A Systematic Review and Metaanalysis. JAMA Intern Med 2019; 179: 1335-1344
  • 84 Lee Y, Park K. Adherence to a Vegetarian Diet and Diabetes Risk: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2017; 9: 603
  • 85 Tonstad S, Stewart K, Oda K. et al. Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr Metab Cardiovasc Dis 2011; 23: 292-299
  • 86 Selinger E, Neuenschwander M, Koller A. et al. Evidence of a vegan diet for health benefits and risks – an umbrella review of meta-analyses of observational and clinical studies. Critical Reviews in Food Science and Nutrition 2023; 63: 9926-9936
  • 87 Koivusalo SB, Rönö K, Klemetti MM. et al. Gestational Diabetes Mellitus Can Be Prevented by Lifestyle Intervention: The Finnish Gestational Diabetes Prevention Study (RADIEL): A Randomized Controlled Trial. Diabetes Care 2016; 39: 24-30
  • 88 Wang C, Wei Y, Zhang X. et al. A randomized clinical trial of exercise during pregnancy to prevent gestational diabetes mellitus and improve pregnancy outcome in overweight and obese pregnant women. Am J Obstet Gynecol 2017; 216: 340-351
  • 89 Griffith RJ, Alsweiler J, Moore AE. et al. Interventions to prevent women from developing gestational diabetes mellitus: an overview of Cochrane Reviews. Cochrane Database Syst Rev 2020; 6: CD012394
  • 90 Tobias DK, Zhang C, van Dam RM. et al. Physical activity before and during pregnancy and risk of gestational diabetes mellitus: a meta-analysis. Diabetes Care 2011; 34: 223-229
  • 91 Guo XY, Shu J, Fu XH. et al. Improving the effectiveness of lifestyle interventions for gestational diabetes prevention: a meta-analysis and meta-regression. BJOG 2019; 126: 311-320
  • 92 Lamain-de RuiterM, Kwee A, Naaktgeboren CA. et al. External validation of prognostic models to predict risk of gestational diabetes mellitus in one Dutch cohort: prospective multicentre cohort study. BMJ 2016; 354: i4338
  • 93 Rasmussen KM, Yaktine AL Hrsg. Weight gain during pregnancy. Reexamining the guidelines. National Academies Press (US). Washington, DC: National Academies Press;. 2009
  • 94 Barnes RA, Wong T, Ross GP. et al. Excessive Weight Gain Before and During Gestational Diabetes Mellitus Management: What Is the Impact?. Diabetes Care 2020; 43: 74-81
  • 95 Deutsche Gesellschaft für Ernährung e. V. (7. aktualisierte Ausgabe 2021): Referenzwerteübersicht. Accessed June 05, 2023 at: https://www.dge.de/wissenschaft/referenzwerte/
  • 96 Ouellette C, Rudkowska I, Lemieux S. et al. Gene-diet interactions with polymorphisms of the MGLL gene on plasma low-density lipoprotein cholesterol and size following an omega-3 polyunsaturated fatty acid supplementation: a clinical trial. Lipids Health Dis 2014; 13: 86
  • 97 Vallée MarcotteB, Cormier H, Guénard F. et al. Novel Genetic Loci Associated with the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation. J Nutrigenet Nutrigenomics 2016; 9: 1-11
  • 98 Rudkowska I, Pérusse L, Bellis C. et al. Interaction between Common Genetic Variants and Total Fat Intake on Low-Density Lipoprotein Peak Particle Diameter: A Genome-Wide Association Study. J Nutrigenet Nutrigenomics 2015; 8: 44-53