Synthesis
DOI: 10.1055/a-2343-0676
paper

Rh(III)-Catalyzed, Redox-Neutral, C–H Multifluoroalkenylation of Benzamides

Wei Lin
a   School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. of China
,
Yifei Qu
a   School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. of China
,
Huixuan Zhu
a   School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. of China
,
Mei Xie
a   School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. of China
,
Jinhui Hu
a   School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. of China
,
Zhuang Xiong
a   School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. of China
,
Wen-Hua Chen
a   School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. of China
,
Jun Xu
b   School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. of China
,
Jia-Qiang Wu
a   School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. of China
› Author Affiliations
This work was financially supported by Basic and Applied Basic Research Foundation of Guangdong Province (2023A1515030144), High-level Talent Research Start-up Project (2018AL001), Science Foundation for Young Teachers (2019td04), and Innovation and Entrepreneurship Project (2020CX03) of Wuyi University.


Abstract

Fluorinated molecules are widely used in pharmaceutical and agrochemical industries. Multifluoroalkyl-containing compounds have attracted increasing attention for their unique ability to alter the activity of drugs and bioactive molecules. Herein, we report an efficient Rh(III)-catalyzed, redox-neutral, C–H multifluoroalkenylation of benzamides with multifluoroalkenes, which provides a versatile protocol for accessing a wide range of multifluoroalkenylated arenes.

Supporting Information



Publication History

Received: 15 April 2024

Accepted after revision: 11 June 2024

Accepted Manuscript online:
11 June 2024

Article published online:
01 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 1a Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Wiley-VCH; Weinheim: 2014
    • 1b Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Chem. Rev. 2022; 122: 167
    • 1c Meanwell NA. J. Med. Chem. 2018; 61: 5822
    • 1d Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 1e Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422

      For selected reviews, see:
    • 2a Theresa L, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 2b Ni C, Hu M, Hu J. Chem. Rev. 2015; 115: 765
    • 2c Nyffeler PT, Duron SG, Burkart MD, Vincenta SP, Wong CH. Angew. Chem. Int. Ed. 2005; 44: 192
    • 2d Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
    • 2e Mykhailiuk PK. Chem. Rev. 2021; 121: 1670

      For selected examples, see:
    • 3a Jeffries B, Wang Z, Graton J, Holland SD, Brind T, Greenwood RD. R, Questel J.-YL, Scott JS, Chiarparin E, Linclau B. J. Med. Chem. 2018; 61: 10602
    • 3b Walton JW, Cross JM, Riedel T, Dyson PJ. Org. Biomol. Chem. 2017; 15: 9186
    • 3c Tiwari DT, Dabral S, Wen J, Wiesenthal J, Terhorst S, Bolm C. Org. Lett. 2017; 19: 4295

      For selected reviews, see:
    • 4a Xiao H, Zhang Z, Fang Y, Zhu L, Li C. Chem. Soc. Rev. 2021; 50: 6308
    • 4b Bhaskaran RP, Babu BP. Adv. Synth. Catal. 2020; 362: 5219

      For selected examples, see:
    • 5a Xue J.-H, Lin Y, Liu Y, Li Q, Wang H. Angew. Chem. Int. Ed. 2024; 63: e202319030
    • 5b Qi J, Xu J, Ang HT, Wang B, Gupta NK, Dubbaka SR, O’Neill P, Mao X, Lum Y, Wu J. J. Am. Chem. Soc. 2023; 145: 24965
    • 5c Ohkubo K, Matsumoto S, Asahara H, Fukuzumi S. ACS Catal. 2024; 14: 2671

      For selected reviews, see:
    • 6a Ma JA, Cahard D. Chem. Rev. 2008; 108: PR1
    • 6b Murphy PM, Baldwin CS, Buck RC. J. Fluorine Chem. 2012; 138: 3
    • 6c Macé Y, Magnier E. Eur. J. Org. Chem. 2012; 2012: 2479
    • 6d Lantaño B, Torviso MR, Bonesi SM, Barata-Vallejo S, Postigo A. Coord. Chem. Rev. 2015; 285: 76

      For selected reviews, see:
    • 7a Yerien DE, Barata-Vallejo S, Postigo A. ACS Catal. 2023; 13: 7756
    • 7b Liu T, Liu J, He J, Hong Y, Zhou H, Liu Y.-L, Tang S. Synthesis 2022; 54: 1919
    • 7c Ma J.-A, Cahard D. Chem. Rev. 2004; 104: 6119
    • 7d Prakash GK. S, Yudin AK. Chem. Rev. 1997; 97: 757
    • 7e Castillo-Pazos DJ, Lasso JD, Li C.-J. Org. Biomol. Chem. 2021; 19: 7116
  • 8 Darses S, Pucheault M, Genêt J.-P. Eur. J. Org. Chem. 2001; 1121
  • 9 For a selected review, see: Sindhe H, Chaudhary B, Chowdhury N, Kamble A, Kumar V, Lad A, Sharma S. Org. Chem. Front. 2022; 9: 1742

    • For selected examples, see:
    • 10a Liu F.-X, Chen W, Cai Y, Zhou Z, Yi W, Cheng K. Org. Chem. Front. 2024; 11: 2512
    • 10b Wang T, Peng Z.-H, Wu L, Song Q, Li Q, Gao H, Zeng Z, Zhou Z, Yi W. Org. Chem. Front. 2023; 10: 5916
    • 10c Gao H, Lin S, Zhang S, Chen W, Liu X, Yang G, Lerner RA, Xu H, Zhou Z, Yi W. Angew. Chem. Int. Ed. 2021; 60: 1959
    • 10d Xu H, Chen W, Bian M, Xu H, Gao H, Wang T, Zhou Z, Yi W. ACS Catal. 2021; 11: 14694
    • 10e Zhou Z, Chen K, Wang Y, Zhong X, Lin S, Gao H, Yi W. Chin. Chem. Lett. 2022; 239: 107849

      For selected examples, see:
    • 11a Wu J.-Q, Zhang S.-S, Gao H, Qi Z, Zhou C.-J, Ji W.-W, Liu Y, Chen Y, Li Q, Li X, Wang H. J. Am. Chem. Soc. 2017; 139: 3537
    • 11b Ji W.-W, Lin E, Li Q, Wang H. Chem. Commun. 2017; 53: 5665
    • 11c Zhao S, Cai X, Lu Y, Hu J, Xiong Z, Jin J, Wang H, Wu J.-Q. Chem. Commun. 2022; 58: 8966

      For selected examples, see:
    • 12a Wang C.-Q, Ye L, Feng C, Loh T.-P. J. Am. Chem. Soc. 2017; 139: 1762
    • 12b Wang C.-Q, Zhang Y, Feng C. Angew. Chem. Int. Ed. 2017; 56: 14918
    • 12c Tian P, Feng C, Loh T.-P. Nat. Commun. 2015; 6: 7472

      For selected examples, see:
    • 13a Kong L, Liu B, Zhou X, Wang F, Li X. Chem. Commun. 2017; 53: 10326
    • 13b Kong L, Zhou X, Li X. Org. Lett. 2016; 18: 6320
    • 14a Zell D, Dhawa U, Müller V, Bursch M, Grimme S, Ackermann L. ACS Catal. 2017; 7: 4209
    • 14b Zell D, Müller V, Dhawa U, Bursch M, Presa RR, Grimme S, Ackermann L. Chem. Eur. J. 2017; 23: 12145
    • 14c Dhawa U, Zell D, Yin R, Okumura S, Murakami M, Ackermann L. J. Catal. 2018; 364: 14

      For selected examples, see:
    • 15a Shu B, Chen S.-Y, Deng N.-X, Zheng T, Xie H, Xie X.-L, Wu J.-Q, Cao H, Zhang S.-S. Org. Chem. Front. 2021; 8: 4445
    • 15b Yang L, Li C, Wang D, Liu H. J. Org. Chem. 2019; 84: 7320

      For selected examples, see:
    • 16a Li Y, Xie F, Liu Y, Yang X, Li X. Org. Lett. 2018; 20: 437
    • 16b Li N, Wang Y, Kong L, Chang J, Li X. Adv. Synth. Catal. 2019; 361: 3880
  • 17 Wang D, Xu X, Zhang J, Zhao Y. J. Org. Chem. 2021; 86: 2696
  • 18 Brochetta M, Borsari T, Bag S, Jana S, Maiti S, Porta A, Werz DB, Zanoni G, Maiti D. Chem. Eur. J. 2019; 25: 10323
  • 19 Harada K, Tezuka N, Hirano K, Miyamoto K, Saito T, Uchiyama M. Chem. Pharm. Bull. 2016; 64: 1442
  • 20 Cui X, Qu J, Yi J, Sun W, Hu J, Guo S, Jin J.-W, Chen W.-H, Wong W.-L, Wu J.-Q. Chem. Commun. 2023; 59: 3747