Synthesis 2024; 56(19): 3045-3053 DOI: 10.1055/a-2343-0676
Rh(III)-Catalyzed, Redox-Neutral, C–H Multifluoroalkenylation of Benzamides
Wei Lin
a
School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. of China
,
Yifei Qu
a
School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. of China
,
Huixuan Zhu
a
School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. of China
,
Mei Xie
a
School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. of China
,
Jinhui Hu
a
School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. of China
,
Zhuang Xiong
a
School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. of China
,
a
School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. of China
,
Jun Xu∗
b
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. of China
,
a
School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. of China
› Institutsangaben This work was financially supported by Basic and Applied Basic Research Foundation of Guangdong Province (2023A1515030144), High-level Talent Research Start-up Project (2018AL001), Science Foundation for Young Teachers (2019td04), and Innovation and Entrepreneurship Project (2020CX03) of Wuyi University.
Abstract
Fluorinated molecules are widely used in pharmaceutical and agrochemical industries. Multifluoroalkyl-containing compounds have attracted increasing attention for their unique ability to alter the activity of drugs and bioactive molecules. Herein, we report an efficient Rh(III)-catalyzed, redox-neutral, C–H multifluoroalkenylation of benzamides with multifluoroalkenes, which provides a versatile protocol for accessing a wide range of multifluoroalkenylated arenes.
Key words
C–H activation -
rhodium -
multifluoroalkenylation -
benzamide -
redox-neutral
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-2343-0676.
Supporting Information
Publikationsverlauf
Eingereicht: 15. April 2024
Angenommen nach Revision: 11. Juni 2024
Accepted Manuscript online: 11. Juni 2024
Artikel online veröffentlicht: 01. Juli 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
For selected reviews, see:
1a
Kirsch P.
Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Wiley-VCH; Weinheim: 2014
1b
Zhang C,
Yan K,
Fu C,
Peng H,
Hawker CJ,
Whittaker AK.
Chem. Rev. 2022; 122: 167
1c
Meanwell NA.
J. Med. Chem. 2018; 61: 5822
1d
Hagmann WK.
J. Med. Chem. 2008; 51: 4359
1e
Zhou Y,
Wang J,
Gu Z,
Wang S,
Zhu W,
Aceña JL,
Soloshonok VA,
Izawa K,
Liu H.
Chem. Rev. 2016; 116: 422
For selected reviews, see:
2a
Theresa L,
Neumann CN,
Ritter T.
Angew. Chem. Int. Ed. 2013; 52: 8214
2b
Ni C,
Hu M,
Hu J.
Chem. Rev. 2015; 115: 765
2c
Nyffeler PT,
Duron SG,
Burkart MD,
Vincenta SP,
Wong CH.
Angew. Chem. Int. Ed. 2005; 44: 192
2d
Yang X,
Wu T,
Phipps RJ,
Toste FD.
Chem. Rev. 2015; 115: 826
2e
Mykhailiuk PK.
Chem. Rev. 2021; 121: 1670
For selected examples, see:
3a
Jeffries B,
Wang Z,
Graton J,
Holland SD,
Brind T,
Greenwood RD. R,
Questel J.-YL,
Scott JS,
Chiarparin E,
Linclau B.
J. Med. Chem. 2018; 61: 10602
3b
Walton JW,
Cross JM,
Riedel T,
Dyson PJ.
Org. Biomol. Chem. 2017; 15: 9186
3c
Tiwari DT,
Dabral S,
Wen J,
Wiesenthal J,
Terhorst S,
Bolm C.
Org. Lett. 2017; 19: 4295
For selected reviews, see:
4a
Xiao H,
Zhang Z,
Fang Y,
Zhu L,
Li C.
Chem. Soc. Rev. 2021; 50: 6308
4b
Bhaskaran RP,
Babu BP.
Adv. Synth. Catal. 2020; 362: 5219
For selected examples, see:
5a
Xue J.-H,
Lin Y,
Liu Y,
Li Q,
Wang H.
Angew. Chem. Int. Ed. 2024; 63: e202319030
5b
Qi J,
Xu J,
Ang HT,
Wang B,
Gupta NK,
Dubbaka SR,
O’Neill P,
Mao X,
Lum Y,
Wu J.
J. Am. Chem. Soc. 2023; 145: 24965
5c
Ohkubo K,
Matsumoto S,
Asahara H,
Fukuzumi S.
ACS Catal. 2024; 14: 2671
For selected reviews, see:
6a
Ma JA,
Cahard D.
Chem. Rev. 2008; 108: PR1
6b
Murphy PM,
Baldwin CS,
Buck RC.
J. Fluorine Chem. 2012; 138: 3
6c
Macé Y,
Magnier E.
Eur. J. Org. Chem. 2012; 2012: 2479
6d
Lantaño B,
Torviso MR,
Bonesi SM,
Barata-Vallejo S,
Postigo A.
Coord. Chem. Rev. 2015; 285: 76
For selected reviews, see:
7a
Yerien DE,
Barata-Vallejo S,
Postigo A.
ACS Catal. 2023; 13: 7756
7b
Liu T,
Liu J,
He J,
Hong Y,
Zhou H,
Liu Y.-L,
Tang S.
Synthesis 2022; 54: 1919
7c
Ma J.-A,
Cahard D.
Chem. Rev. 2004; 104: 6119
7d
Prakash GK. S,
Yudin AK.
Chem. Rev. 1997; 97: 757
7e
Castillo-Pazos DJ,
Lasso JD,
Li C.-J.
Org. Biomol. Chem. 2021; 19: 7116
8
Darses S,
Pucheault M,
Genêt J.-P.
Eur. J. Org. Chem. 2001; 1121
9 For a selected review, see:
Sindhe H,
Chaudhary B,
Chowdhury N,
Kamble A,
Kumar V,
Lad A,
Sharma S.
Org. Chem. Front. 2022; 9: 1742
For selected examples, see:
10a
Liu F.-X,
Chen W,
Cai Y,
Zhou Z,
Yi W,
Cheng K.
Org. Chem. Front. 2024; 11: 2512
10b
Wang T,
Peng Z.-H,
Wu L,
Song Q,
Li Q,
Gao H,
Zeng Z,
Zhou Z,
Yi W.
Org. Chem. Front. 2023; 10: 5916
10c
Gao H,
Lin S,
Zhang S,
Chen W,
Liu X,
Yang G,
Lerner RA,
Xu H,
Zhou Z,
Yi W.
Angew. Chem. Int. Ed. 2021; 60: 1959
10d
Xu H,
Chen W,
Bian M,
Xu H,
Gao H,
Wang T,
Zhou Z,
Yi W.
ACS Catal. 2021; 11: 14694
10e
Zhou Z,
Chen K,
Wang Y,
Zhong X,
Lin S,
Gao H,
Yi W.
Chin. Chem. Lett. 2022; 239: 107849
For selected examples, see:
11a
Wu J.-Q,
Zhang S.-S,
Gao H,
Qi Z,
Zhou C.-J,
Ji W.-W,
Liu Y,
Chen Y,
Li Q,
Li X,
Wang H.
J. Am. Chem. Soc. 2017; 139: 3537
11b
Ji W.-W,
Lin E,
Li Q,
Wang H.
Chem. Commun. 2017; 53: 5665
11c
Zhao S,
Cai X,
Lu Y,
Hu J,
Xiong Z,
Jin J,
Wang H,
Wu J.-Q.
Chem. Commun. 2022; 58: 8966
For selected examples, see:
12a
Wang C.-Q,
Ye L,
Feng C,
Loh T.-P.
J. Am. Chem. Soc. 2017; 139: 1762
12b
Wang C.-Q,
Zhang Y,
Feng C.
Angew. Chem. Int. Ed. 2017; 56: 14918
12c
Tian P,
Feng C,
Loh T.-P.
Nat. Commun. 2015; 6: 7472
For selected examples, see:
13a
Kong L,
Liu B,
Zhou X,
Wang F,
Li X.
Chem. Commun. 2017; 53: 10326
13b
Kong L,
Zhou X,
Li X.
Org. Lett. 2016; 18: 6320
14a
Zell D,
Dhawa U,
Müller V,
Bursch M,
Grimme S,
Ackermann L.
ACS Catal. 2017; 7: 4209
14b
Zell D,
Müller V,
Dhawa U,
Bursch M,
Presa RR,
Grimme S,
Ackermann L.
Chem. Eur. J. 2017; 23: 12145
14c
Dhawa U,
Zell D,
Yin R,
Okumura S,
Murakami M,
Ackermann L.
J. Catal. 2018; 364: 14
For selected examples, see:
15a
Shu B,
Chen S.-Y,
Deng N.-X,
Zheng T,
Xie H,
Xie X.-L,
Wu J.-Q,
Cao H,
Zhang S.-S.
Org. Chem. Front. 2021; 8: 4445
15b
Yang L,
Li C,
Wang D,
Liu H.
J. Org. Chem. 2019; 84: 7320
For selected examples, see:
16a
Li Y,
Xie F,
Liu Y,
Yang X,
Li X.
Org. Lett. 2018; 20: 437
16b
Li N,
Wang Y,
Kong L,
Chang J,
Li X.
Adv. Synth. Catal. 2019; 361: 3880
17
Wang D,
Xu X,
Zhang J,
Zhao Y.
J. Org. Chem. 2021; 86: 2696
18
Brochetta M,
Borsari T,
Bag S,
Jana S,
Maiti S,
Porta A,
Werz DB,
Zanoni G,
Maiti D.
Chem. Eur. J. 2019; 25: 10323
19
Harada K,
Tezuka N,
Hirano K,
Miyamoto K,
Saito T,
Uchiyama M.
Chem. Pharm. Bull. 2016; 64: 1442
20
Cui X,
Qu J,
Yi J,
Sun W,
Hu J,
Guo S,
Jin J.-W,
Chen W.-H,
Wong W.-L,
Wu J.-Q.
Chem. Commun. 2023; 59: 3747