Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2024; 35(20): 2482-2496
DOI: 10.1055/a-2375-7696
DOI: 10.1055/a-2375-7696
letter
Special Issue to Celebrate the 75th Birthday of Prof. B. C. Ranu
Thiuram Disulfide Mediated Copper-Catalyzed C–S Cross-Coupling: Synthesis of S-Thiocarbamate Compounds
A.S. acknowledges financial support from SERB, India, with a research grant from the SERB-SURE scheme (File No: SUR/2022/000225). S.M. is grateful to UGC, India, for his fellowship (UGC, NET-SRF).
Abstract
Thiuram disulfides undergo a Cu(I)-catalyzed C–S cross-coupling with aryl iodides through Cu(OAc)2·H2O-assisted desulfurization to produce the S-thiocarbamate ester compounds efficiently. Various aryl iodides containing diverse substituents underwent a smooth reaction with a series of cyclic and acyclic secondary amine-based thiuram disulfides under an open-air atmosphere. A probable mechanistic pathway has been suggested based on control experiments and reports from the literature.
Key words
thiuram disulfides - thiocarbamates - C–S cross-coupling - copper catalysis - dithiocarbamatesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2375-7696.
- Supporting Information
Publication History
Received: 18 June 2024
Accepted after revision: 29 July 2024
Accepted Manuscript online:
30 July 2024
Article published online:
19 August 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Kapanda CN, Muccioli GG, Labar G, Poupaert JH, Lambert DM. J. Med. Chem. 2009; 52: 7310
- 1b Cvek B. Drug Discovery Today 2012; 17: 409
- 1c Brahemi G, Kona FR, Fiasella A, Buac D, Soukupová J, Brancale A, Burger AM, Westwell AD. J. Med. Chem. 2010; 53: 2757
- 2a Heideman G, Datta RN, Noordermeer JW. M, Baarle BV. Rubber Chem. Technol. 2004; 77: 512
- 2b Scheele WL, Dummer OW. Rubber Chem. Technol. 1956; 29: 15
- 3 Sharma VK, Aulakh JS, Malik AK. J. Environ. Monit. 2003; 5: 717
- 4a Dutta S, Mondal M, Ghosh T, Saha A. Org. Chem. Front. 2019; 6: 70
- 4b Patra D, Saha A. Org. Chem. Front. 2023; 10: 1686
- 4c Dutta S, Saha A. Org. Biomol. Chem. 2019; 17: 9360
- 4d Sarkar S, Pal S, Mukherjee A, Santra S, Zyryanov GV, Majee A. J. Org. Chem. 2024; 89: 1473
- 5 Patra D, Saha A. Org. Chem. Front. 2024; 11: 1150
- 6 Mondal S, Mondal S, Saha A. J. Org. Chem. 2024; 89: 2182
- 7a Chen YS, Schuphan I, Casida JE. J. Agric Food Chem. 1979; 27: 709
- 7b Erian AW, Sherif SM. Tetrahedron 1999; 55: 7957
- 7c Mizuno T, Nishiguchi I, Okushi T, Hirashima T. Tetrahedron Lett. 1991; 32: 6867
- 7d Xie W, Wu Y, Zhang J, Mei Q, Zhang Y, Zhu N, Liu R, Zhang H. Eur. J. Med. Chem. 2018; 145: 35
- 7e Wood TF, Gardner JH. J. Am. Chem. Soc. 1941; 63: 2741
- 7f Goel A, Mazur SJ, Fattah RJ, Hartman TL, Turpin JA, Huang M, Rice WG, Appella E, Inman JK. Bioorg. Med. Chem. Lett. 2002; 12: 767
- 7g Lindgren B, Lindgren G, Artursson E, Puu G, Fredriksson J, Andersson M. J. Enzyme Inhib. 1985; 1: 1
- 8a Newman MS, Karnes HA. J. Org. Chem. 1966; 31: 3980
- 8b Gendron T, Pereira R, Abdi HY, Witney TH, Årstad E. Org. Lett. 2019; 22: 274
- 8c Miyazaki K. Tetrahedron Lett. 1968; 9: 2793
- 8d Sun D, Ye Q, Yan X, Rew Y, Fan P, He X, Jiang M, McMinn DL, Monshouwer M, Tu H, Powers JP. ACS Med. Chem. Lett. 2014; 5: 1245
- 8e Eriksen K, Ulfkjær A, Sølling TI, Pittelkow M. J. Org. Chem. 2018; 83: 10786
- 8f Mampuys P, Ruijter E, Orru RV. A, Maes BU. W. Org. Lett. 2018; 20: 4235
- 8g Novakova V, Miletin M, Filandrová T, Lenčo J, Růžička A, Zimcik P. J. Org. Chem. 2014; 79: 2082
- 8h Gallardo-Godoy A, Fierro A, McLean TH, Castillo M, Cassels BK, Reyes-Parada M, Nichols DE. J. Med. Chem. 2005; 48: 2407
- 8i Das J, Le Cavelier F, Rouden J, Blanchet J. Synthesis 2012; 44: 1349
- 9a Yuan Y-q, Guo S-r, Xiang J-n. Synlett 2013; 24: 0443
- 9b Chen J, Mao J, He Y, Shi D, Zou B, Zhang G. Tetrahedron 2015; 71: 9496
- 9c Matter ME, Čamdžić L, Stache EE. Angew. Chem. Int. Ed. 2023; 62: e202308648
- 9d Bi W.-Z, Zhang W.-J, Li Z.-J, He Y.-H, Feng S.-X, Geng Y, Chen X.-L, Que L.-B. Org. Biomol. Chem. 2021; 19: 8701
- 9e Kuniyasu H, Hiraike H, Morita M, Tanaka A, Sugoh K, Kurosawa H. J. Org. Chem. 1999; 64: 7305
- 9f Movassagh B, Soleiman-Beigi M. Monatsh. Chem. 2008; 139: 137
- 9g Moseley JD, Lenden P. Tetrahedron 2007; 63: 4120
- 9h Roesel AF, Ugandi M, Huyen NT. T, Májek M, Broese T, Roemelt M, Francke R. J. Org. Chem. 2020; 85: 8029
- 9i Perkowski AJ, Cruz CL, Nicewicz DA. J. Am. Chem. Soc. 2015; 137: 15684
- 9j Nishiyama Y, Kawamatsu H, Sonoda N. J. Org. Chem. 2005; 70: 2551
- 9k Jacob J, Reynolds KA, Jones WD, Godleski SA, Valente RR. Organometallics 2001; 20: 1028
- 9l Moseley JD, Sankey RF, Tang ON, Gilday JP. Tetrahedron 2006; 62: 4685
- 9m Broese T, Roesel AF, Prudlik A, Francke R. Org. Lett. 2018; 20: 7483
- 9n Malviya BK, Verma VP, Sharma S. Org. Biomol. Chem. 2021; 19: 9491
- 9o Deng J.-C, Zhuang S.-B, Liu Q.-Z, Lin Z.-W, Su Y.-L, Chen J.-H, Tang R.-Y. RSC Adv. 2017; 7: 54013
- 10a Sarró P, Gallego-Gamo A, Pleixats R, Vallribera A, Gimbert-Suriñach C, Granados A. Adv. Synth. Catal. 2024; 366: 2587
- 10b Patra SG, Mizrahi A, Meyerstein D. Acc. Chem. Res. 2020; 53: 2189
- 11 Thiuram Disulfides (2);6 General Procedure The appropriate secondary amine (20 mmol, 2 equiv) was added to a 50 mL round-bottomed flask equipped with a stirrer bar and containing DMF (30 mL). The mixture was stirred for 5 min, then CS2 (10 mmol, 1 equiv) was added under ice-cold conditions. CBr4 (10 mmol, 1 equiv) was then added, and the resulting solution was stirred for 1.5 h at r.t. The solution was then poured into ice-cold H2O (100 mL) and the resulting mixture was extracted with EtOAc. The extracts were dried (Na2SO4) and then concentrated in a rotatory evaporator to give the white crystalline thiuram disulfide.
- 12 S-Phenyl Piperidine-1-carbothioate (3b) PhI (1a; 51 mg, 0.25 mmol, 1 equiv), Cu(OAc)2·H2O (200 mg, 1 mmol, 4 equiv), CuI (10 mg, 20 mol%), K2CO3 (276 mg, 2 mmol, 8 equiv), and a 5–6 M solution of THBP in decane (0.5 mmol, 2 equiv) were added to a solution of thiuram disulfide 2a (160 mg, 0.5 mmol, 2 equiv) in DMSO (2 mL), and the mixture was stirred for 8–10 h at 110 °C in an oil bath under open air. The mixture was then extracted with EtOAc and the extracts were dried (Na2SO4). The product was isolated by column chromatography [silica gel, hexane–EtOAc (95:5)] to give a white solid; yield: 42 mg (76%). 1H NMR (300 MHz, CDCl3): δ = 7.53–7.47 (m, 2 H), 7.41–7.35 (m, 3 H), 3.56–3.52 (m, 4 H), 1.70–1.60 (m, 6 H). 13C{1H} NMR (75 MHz, CDCl3): δ = 165.5, 135.9, 129.1, 128.9, 128.8, 45.4, 25.8, 24.5.