Subscribe to RSS
DOI: 10.1055/a-2403-2383
Asymmetric Intermolecular Conjugate Addition of 3-Substituted 2-Benzofuranones to Maleimides via Noncovalent NHC Catalysis
We gratefully acknowledge the generous financial support from the Science and Engineering Research Board, India, (CRG/2020/000800) and thank CSIR and UGC for fellowships to B.D.M. and S.G.
Abstract
An efficient N-heterocyclic carbene (NHC)-catalyzed asymmetric conjugate addition reaction to afford synthetically challenging benzofuranone derivatives having vicinal all-carbon quaternary and tertiary stereocenters is presented. The reaction operates solely through noncovalent interaction between a newly designed NHC and the substrates, providing access to a series of functionalized benzofuranones in good yields and with high ee values. The protocol applies to preparative-scale synthesis. A catalytic cycle involving a noncovalent substrate–NHC interaction is implicated in the process, based on a mechanistic control study.
Key words
asymmetric catalysis - N-heterocyclic carbenes - noncovalent interaction - conjugate addition - benzofuranones - maleimidesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2403-2383.
- Supporting Information
- CIF File
Publication History
Received: 22 July 2024
Accepted after revision: 26 August 2024
Accepted Manuscript online:
26 August 2024
Article published online:
27 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Tang Z, Tong Z, Qiu R, Yin S.-F, Kambe N. Synthesis 2021; 53: 3193
- 1b Li Y, Li X, Cheng J.-P. Adv. Synth. Catal. 2014; 356: 1172
- 2a Nicolaou KC, Kang Q, Wu TR, Lim CS, Chen DY.-K. J. Am. Chem. Soc. 2010; 132: 7540
- 2b Nicolaou KC, Wu TR, Kang Q, Chen DY.-K. Angew. Chem. Int. Ed. 2009; 48: 3440
- 2c Ho Y.-S, Duh J.-S, Jeng J.-H, Wang Y.-J, Liang Y.-C, Lin C.-H, Tseng C.-J, Yu C.-F, Chen R.-J, Lin J.-K. Int. J. Cancer 2001; 91: 393
- 2d Su B.-N, Takaishi Y, Tori M, Takaoka S, Honda G, Itoh M, Takeda Y, Kodzhimatov OK, Ashurmetov O. Org. Lett. 2000; 2: 493
- 2e Li W, Asada Y, Yoshikawa T. Phytochemistry 2000; 55: 447
- 3a Liu Y, Zhou C, Xiong M, Jiang J, Wang J. Org. Lett. 2018; 20: 5889
- 3b Wang Z, Yao Q, Kang T, Feng J, Liu X, Lin L, Feng X. Chem. Commun. 2014; 50: 4918
- 3c Wilsily A, Fillion E. Org. Lett. 2008; 10: 2801
- 3d Trost BM, Cramer N, Silverman SM. J. Am. Chem. Soc. 2007; 129: 12396
- 4a Zhu C, Yang L, Nie J, Zheng Y, Ma J. Chin. J. Chem. 2012; 30: 2693
- 4b Li X, Xue X.-S, Liu C, Wang B, Tan B.-X, Jin J.-L, Zhang Y.-Y, Dong N, Cheng J.-P. Org. Biomol. Chem. 2012; 10: 413
- 4c Liu C, Tan B.-X, Jin J.-L, Zhang Y.-Y, Dong N, Li X, Cheng J.-P. J. Org. Chem. 2011; 76: 5838
- 4d Li X, Xi Z, Luo S, Cheng J.-P. Adv. Synth. Catal. 2010; 352: 1097
- 5a Wang M, Zhang Z, Zhang W. Acc. Chem. Res. 2022; 55: 2708
- 5b Yang X, Majhi PK, Chai H, Liu B, Sun J, Liu T, Liu Y, Zhou L, Xu J, Liu J, Wang D, Zhao Y, Jin Z, Chi YR. Angew. Chem. Int. Ed. 2021; 60: 159
- 5c Wang M, Zhang X, Ling Z, Zhang Z, Zhang W. Chem. Commun. 2017; 53: 1381
- 5d Wang M, Zhang Z, Liu S, Xie F, Zhang W. Chem. Commun. 2014; 50: 1227
- 6 Pesciaioli F, Tian X, Bencivenni G, Bartoli G, Melchiorre P. Synlett 2010; 1704
- 7 Li X, Hu S, Xi Z, Zhang L, Luo S, Cheng J.-P. J. Org. Chem. 2010; 75: 8697
- 8a Bellotti P, Koy M, Hopkinson MN, Glorius F. Nat. Rev. Chem. 2021; 5: 711
- 8b Ishii T, Nagao K, Ohmiya H. Chem. Sci. 2020; 11: 5630
- 8c N-Heterocyclic Carbenes in Organocatalysis. Biju AT. Wiley-VCH; Weinheim: 2019
- 8d Zhao M, Zhang Y.-T, Chen J, Zhou L. Asian J. Org. Chem. 2018; 7: 54
- 8e Chen X.-Y, Li S, Vetica F, Kumar M, Enders D. iScience 2018; 2: 1
- 8f Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
- 8g Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
- 8h Grossmann A, Enders D. Angew. Chem. Int. Ed. 2012; 51: 314
- 8i Douglas J, Churchill G, Smith AD. Synthesis 2012; 44: 2295
- 8j Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
- 9a Song R, Jin Z, Chi YR. Chem. Sci. 2021; 12: 5037
- 9b Mondal S, Yetra SR, Mukherjee S, Biju AT. Acc. Chem. Res. 2019; 52: 425
- 9c Murauski KJ. R, Jaworski AA, Scheidt KA. Chem. Soc. Rev. 2018; 47: 1773
- 9d Zhang C, Hooper JF, Lupton DW. ACS Catal. 2017; 7: 2583
- 9e Mahatthananchai J, Bode JW. Acc. Chem. Res. 2014; 47: 696
- 9f De Sarkar S, Biswas A, Samanta RC, Studer A. Chem. Eur. J. 2013; 19: 4664
- 10a Chen J, Huang Y. In N-Heterocyclic Carbenes in Organocatalysis . Biju AT. Wiley-VCH; Weinheim: 2019: 261
- 10b Chen J, Huang Y. Sci. China Chem. 2016; 59: 251
- 11a Li E, Chen J, Huang Y. Angew. Chem. Int. Ed. 2022; 61: e202202040
- 11b Guo F, Chen J, Huang Y. ACS Catal. 2021; 11: 6316
- 11c Yuan P, Meng S, Chen J, Huang Y. Synlett 2016; 27: 1068
- 11d Wang L, Chen J, Huang Y. Angew. Chem. Int. Ed. 2015; 54: 15414
- 11e Chen J, Huang Y. Nat. Commun. 2014; 5: 3437
- 12a Mondal BD, Gorai S, Nath R, Paul A, Guin J. Chem. Eur. J. 2024; 30: e202303115
- 12b Maji U, Mondal BD, Guin J. Org. Lett. 2023; 25: 2323
- 12c Santra S, Maji U, Guin J. Org. Lett. 2020; 22: 468
- 12d Santra S, Porey A, Jana B, Guin J. Chem. Sci. 2018; 9: 6446
- 13 Heathcote DM, De Boos GA, Atherton JH, Page MI. J. Chem. Soc., Perkin Trans. 2 1998; 535
- 14 Massey RS, Collett CJ, Lindsay AG, Smith AD, O’Donoghue AC. J. Am. Chem. Soc. 2012; 134: 20421
- 15a Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2017; 117: 10608
- 15b James T, van Gemmeren M, List B. Chem. Rev. 2015; 115: 9388
- 15c Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
- 15d Uraguchi D, Ueki Y, Ooi T. Science 2009; 326: 120
- 15e Lacour J, Moraleda D. Chem. Commun. 2009; 7073
- 16 Zhao C, Li F, Wang J. Angew. Chem. Int. Ed. 2016; 55: 1820
- 17 Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KR. K, Norwood VM. IV, Aubé J. Chem. Rev. 2022; 122: 12544
- 18 Magyar Á, Juhász K, Hell Z. Synthesis 2020; 53: 279
- 19 CCDC 2363902 contains the supplementary crystallographic data for compound 14. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 20 General procedure: NHC-catalyzed intermolecular conjugate addition reaction to maleimides (GP-I):To a flame dried Schlenk tube equipped with a magnetic stir bar, azolium salt 1e (0.006 mmol, 3.0 mol%), activated 4 Å MS (30.0 mg) and toluene (1.5 ml) were added under Ar atmosphere. To the mixture, LiHMDS (1.0 M in THF, 0.004 mmol, 2.0 mol%) was added at 25 °C and the resulting mixture was stirred for 30 minutes. 3-Aryl-2-substituted benzofuranone (0.2 mmol, 1.0 equiv) and HFIP (0.002 mmol, 1.0 mol%) were then added to the mixture and stirring was continued for 10 minutes at 25 °C. The reaction mixture was then cooled to –78 °C and stirred for 10 minutes. To the cold mixture, a solution of appropriate maleimide (0.2 mmol, 1.0 equiv) in 0.5 mL toluene was added drop-wise under argon atmosphere. The reaction was continued for 12 h maintaining the reaction temperature at –78 °C. The reaction was quenched by adding 1.0 mL of water at –78 °C and the resulting mixture was stirred for 5 minutes. The reaction was allowed to warm to room temperature, organic layer was separated and aqueous layer was extracted with EtOAc (three times). The combined organic layer was dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude material was purified by column chromatography (SiO2, eluant: 25–40% EtOAc-PE) to afford the desired products. Compound 4: Prepared according to GP-I, combining 2a (42.0 mg, 0.2 mmol), 3a (34.6 mg, 0.2 mmol), 1e (3.7 mg, 0.006 mmol), LiHMDS (1.0 M in THF, 4.0 µL, 0.004 mmol), HFIP (0.2 µL, 0.002 mmol) and 4 Å MS (30.0 mg) in toluene (0.1 M, 2.0 mL) at –78 °C for 12 h. The crude product was purified by column chromatography (SiO2, 30% EtOAc-PE, Rf = 0.3) to afford the product 4 in a mixture of diastereomers (62.0 mg, 82%, combined yield) as white solid. The diastereomeric ratio (dr) was determined to be 1:1 by 1H NMR analysis.1H NMR (500 MHz, CDCl3) δ = 7.40–7.18 (m, 22 H, 11 Hmajor 11 Hminor), 7.10-7.09 (m, 2 H, 1 Hmajor , 1 Hminor), 6.66-6.64 (m, 2 H, 1 Hmajor , 1 Hminor), 4.29 (dd, J = 10.0, 4.5 Hz, 1 Hmajor ), 4.24 (dd, J = 9.5, 5.5 Hz, 1 Hminor), 3.02-2.92 (m, 2H, 1Hmajor , 1 Hminor), 2.71 (dd, J = 19.5, 4.5 Hz, 1 Hmajor ), 2.38 (dd, J = 18.5, 5.5 Hz, 1 Hminor) ppm.13 C NMR (125 MHz, CDCl3) δ = 176.0, 175.8, 174.8, 174.3, 174.2, 173.5, 154.2, 153.6, 135.9, 135.6, 131.5, 131.2, 130.9, 130.7, 129.5, 129.3, 129.2, 129.1, 128.9, 128.9, 128.6, 127.5, 127.1, 126.5, 126.3, 126.2, 125.5, 125.5, 125.2, 124.7, 124.5, 112.4, 111.8, 56.3, 55.8, 55.7, 48.2, 46.4, 32.3, 32.2 ppm (additional 13C NMR signals are due to diastereomers).HRMS (ESI+) m/z calculated for C24H17NO4 [M+H]+ 384.1236, found 384.1235. IR (Neat) Vmax = 2923, 2852, 1797, 1714, 1478, 1388, 1132, 1069, 756, 696, 489 cm–1.HPLC: The enantiomeric excess (86%) for both the diastereomers was determined by HPLC analysis using Daicel Chiralpak IG-3 column: n-hexane: i-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm: τmajor = 17.25 min, τminor = 23.21 min for major diastereomer and τmajor = 32.16 min, τminor = 39.60 min for minor diastereomer.
For selected examples of organocatalytic enantioselective syntheses of benzofuranones having an all-carbon quaternary stereocenter through C-acylation of 3-substituted benzofuran(3H)-ones, see: