Subscribe to RSS
DOI: 10.1055/a-2497-1767
Three-Component Synthesis of Cyanopyrazoles Employing Diazoacetonitrile
Financial support by the Science and Engineering Research Board, DST, Govt. of India (File No CRG/2021/006185) is gratefully acknowledged.

Abstract
An efficient three-component reaction involving aldehydes, β-ketophosphonates, and diazoacetonitrile has been developed for the construction of highly substituted cyanopyrazoles. The reaction proceeds by a three-step, domino process comprised of a base-mediated Horner–Wadsworth–Emmons reaction/(3+2) cycloaddition and subsequent oxidation to form pyrazole derivatives. A wide range of readily available aldehydes and ketophosphonates were used to access these exciting scaffolds under mild conditions.
Key words
diazoacetonitrile - three-component - cyanopyrazole - β-ketophosphonate - 1,3-dipolar cycloadditionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2497-1767.
- Supporting Information
- CIF File
Publication History
Received: 12 September 2024
Accepted after revision: 29 October 2024
Accepted Manuscript online:
05 December 2024
Article published online:
02 January 2025
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Xu Z, Zhuang Y, Chen Q. Eur. J. Med. Chem. 2023; 257: 115495
- 1b Chandrasekharan SP, Dhami A, Kumar S, Mohanan K. Org. Biomol. Chem. 2022; 20: 8817
- 1c Mykhailiuk PK. Chem. Rev. 2021; 121: 1670
- 1d Kumar V, Kaur K, Gupta GK, Sharma AK. Eur. J. Med. Chem. 2013; 69: 735
- 2a Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot Y, Al-aizari F, Ansar M. Molecules 2018; 23: 134
- 2b Szabó G, Fischer J, Kis-Varga Á, Gyires K. J. Med. Chem. 2008; 51: 142
- 2c Donohue SR, Halldin C, Pike VW. Tetrahedron Lett. 2008; 49: 2789
- 3a Elleraas J, Ewanicki J, Johnson TW, Sach NW, Collins MR, Richardson PF. Angew. Chem. Int. Ed. 2016; 55: 3590
- 3b Johnson TW, Richardson PF, Bailey S, Brooun A, Burke BJ, Collins MR, Cui JJ, Deal JG, Deng Y.-L, Dinh D, Engstrom LD, He M, Hoffman J, Hoffman RL, Huang Q, Kania RS, Kath JC, Lam H, Lam JL, Le PT, Lingardo L, Liu W, Mctigue M, Palmer CL, Sach NW, Smeal T, Smith GL, Stewart AE, Timofeevski S, Zhu H, Zhu J, Zou HY, Edwards MP. J. Med. Chem. 2014; 57: 4720
- 3c Mizuhara T, Kato T, Hirai A, Kurihara H, Shimada Y, Taniguchi M, Maeta H, Togami H, Shimura K, Matsuoka M, Okazaki S, Takeuchi T, Ohno H, Oishi S, Fujii N. Bioorg. Med. Chem. Lett. 2013; 23: 4557
- 4a Sammelson RE, Caboni P, Durkin PK. A, Casida JE. Bioorg. Med. Chem. 2004; 12: 3345
- 4b Caboni P, Sammelson RE, Casida JE. J. Agric. Food Chem. 2003; 51: 7055
- 4c Elie R, Rüther E, Farr I, Emilien G, Salinas EJ. Clin. Psychiatry 1999; 60: 536
- 5a Prieto A, Bouyssi D, Monteiro N. ACS Catal. 2016; 6: 7197
- 5b Senecal TD, Shu W, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 10035
- 6a Zhou Y, Gao C.-F, Ma H, Nie J, Ma J.-A, Zhang F.-G. Chem. Asian J. 2022; 17: e202200436
- 6b Gao C.-F, Zhou Y, Ma H, Zhang Y, Nie J, Zhang F, Ma J.-A. CCS Chem. 2022; 4: 3693
- 6c Kang JM, Kwon SO, Ann J, Blumberg PM, Ha H, Yoo YD, Frank-Foltyn R, Lesch B, Bahrenberg G, Stockhausen H, Christoph T, Lee J. Bioorg. Med. Chem. Lett. 2020; 30: 127548
- 6d Lee S, Kim C, Ann J, Thorat SA, Kim E, Park J, Choi S, Blumberg PM, Frank-Foltyn R, Bahrenberg G, Stockhausen H, Christoph T, Lee J. Bioorg. Med. Chem. Lett. 2017; 27: 4383
- 7a Mykhailiuk PK. Org. Biomol. Chem. 2017; 15: 729
- 7b Mertens L, Koenigs RM. Org. Biomol. Chem. 2016; 14: 10547
- 7c Mertens L, Hock KJ, Koenigs RM. Chem. Eur. J. 2016; 22: 9542
- 7d Müller S, Liepold B, Roth GJ, Bestmann HJ. Synlett 1996; 521
- 7e Gilbert JC, Weerasooriya U. J. Org. Chem. 1982; 47: 1837
- 7f Seyferth D, Marmor RS, Hilbert P. J. Org. Chem. 1971; 36: 1379
- 7g Gilman H, Jones RG. J. Am. Chem. Soc. 1943; 65: 1458
- 8 Mykhailiuk PK, Koenigs RM. Chem. Eur. J. 2020; 26: 89
- 9a Chandgude AL, Fasan R. Angew. Chem. Int. Ed. 2018; 57: 15852
- 9b Hock KJ, Spitzner R, Koenigs RM. Green Chem. 2017; 19: 2118
- 10a Empel C, Koenigs RM. J. Flow Chem. 2020; 10: 157
- 10b Hock KJ, Knorrscheidt A, Hommelsheim R, Ho J, Weissenborn MJ, Koenigs RM. Angew. Chem. Int. Ed. 2019; 58: 3630
- 10c Empel C, Hock KJ, Koenigs RM. Org. Biomol. Chem. 2018; 16: 7129
- 11 Zhou L.-N, Feng F.-F, Cheung CW, Ma J.-A. Org. Lett. 2021; 23: 739
- 12 Mykhailiuk PK. Eur. J. Org. Chem. 2015; 2015: 7235
- 13 Chen Z, Zhang Y, Nie J, Ma J.-A. Org. Lett. 2018; 20: 2120
- 14a Huan X, Wang Y, Peng X, Xie S, He Q, Zhang X, Lan L, Yang C. Eur. J. Med. Chem. 2022; 236: 114309
- 14b Peng X, Zhang X, Li S, Lu Y, Lan LF, Yang C. Org. Chem. Front. 2019; 6: 1775
- 15 Zhou LN, Zhang FG, Cheung CW, Ma J.-A. Synlett 2024; 35: 1557
- 16 Dhami A, Kumar A, Hisana K, Mohanan K. Adv. Synth. Catal. 2024; 366: 2551
- 17 Crystallographic data: CCDC 2376003 (4e) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
For examples, see:
For examples, see: