Subscribe to RSS
DOI: 10.1055/s-0028-1083381
Room-Temperature Palladium-Catalyzed Allyl Cross-Coupling Reaction with Boronic Acids Using Phosphine-Free Hydrazone Ligands
Publication History
Publication Date:
01 October 2008 (online)
Abstract
Palladium-catalyzed allyl cross-coupling reaction of allylic acetates with a variety of boronic acids at room temperature using a catalytic amount of Pd(OAc)2 with phosphine-free hydrazone as a ligand gave the allylbenzene derivatives in good yields.
Key words
palladium - catalysis - allyl cross-coupling - boronic acid - hydrazones
- For reviews, see the following:
-
1a
Larhed M.Hallberg A. In Handbook of Organopalladium Chemistry for Organic Synthesis Vol. 1:Negishi E. Wiley-Interscience; New York: 2002. p.1133 -
1b
Whitcombe NJ.Hii KK.Gibson SE. Tetrahedron 2001, 57: 7449 -
1c
Beletskaya IP.Cheprakov AV. Chem. Rev. 2000, 100: 3009 -
1d
Hegedus LS. Transition Metals in the Synthesis of Complex Organic Molecules 2nd ed.: University Science Books; Sausalito CA: 1999. Chap. 4.6. -
1e
Bräse S.de Meijere A. In Metal-Catalyzed Cross-Coupling ReactionsDiederich F.Stang PJ. Wiley-VCH; Weinheim Germany: 1998. Chap. 3. -
1f
Link JT.Overman LE. In Metal-Catalyzed Cross-Coupling ReactionsDiederich F.Stang PJ. Wiley-VCH; Weinheim Germany: 1998. Chap. 6. -
1g
Beller M.Riermeier TH.Stark G. In Transition Metals for Organic Synthesis Vol. 1:Beller M.Bolm C. Wiley-VCH; Weinheim Germany: 1998. p.208 -
1h
Crisp GT. Chem. Soc. Rev. 1998, 27: 427 -
1i
Tsuji J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis Wiley; Chichester U.K.: 1995. - For reviews, see:
-
2a
Llord-Williams P.Giralt E. Chem. Soc. Rev. 2001, 30: 145 -
2b
Suzuki A. J. Organomet. Chem. 1999, 576: 147 -
2c
Suzuki A. Metal-Catalyzed Cross-Coupling ReactionsDiederich F.Stang PJ. Wiley-VCH; Weinheim: 1998. p.49 -
2d
Stanforth SP. Tetrahedron 1998, 54: 263 -
2e
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 -
3a
Su C.-R.Shen Y.-C.Kuo P.-C.Leu Y.-L.Damu AG.Wang Y.-H.Wu T.-S. Bioorg. Med. Chem. Lett. 2006, 16: 6155 -
3b
Belley M.Chan CC.Gareau Y.Gallant M.Juteau H.Houde K.Lachance N.Labelle M.Sawyer N.Tremblay N.Limontage S.Carrière M.-C.Denis D.Greig GM.Slipez D.Gordon R.Chauret N.Lo C.Zamboni RJ.Metters KM. Bioorg. Med. Chem. Lett. 2006, 16: 5639 -
3c
Anderson JC.Headly C.Stapleton PD.Taylor PW. Tetrahedron 2005, 61: 7703 -
3d
Kramer B.Waldvugel SR. Angew. Chem. Int. Ed. 2004, 43: 2446 -
4a
Bouyssi D.Gerusz V.Balme G. Eur. J. Org. Chem. 2002, 2445 -
4b
Ortar G. Tetrahedron Lett. 2003, 44: 4311 - 5
Uozumi Y.Danjo H.Hayashi T. J. Org. Chem. 1999, 64: 3384 - 6
Polackova V.Toma S.Kappe CO. Tetrahedron 2007, 63: 8742 -
7a
Nájera C.Gil-Moltó J.Karlström S. Adv. Synth. Catal. 2004, 346: 1798 -
7b
Botella L.Nájera C.
J. Organomet. Chem. 2002, 663: 46 -
8a
Mino T.Shirae Y.Sakamoto M.Fujita T. Synlett 2003, 882 -
8b
Mino T.Shirae Y.Sakamoto M.Fujita T. J. Org. Chem. 2005, 70: 2191 - 9
Mino T.Shirae Y.Sasai Y.Sakamoto M.Fujita T. J. Org. Chem. 2006, 71: 6834 - 10
Mino T.Shirae Y.Saito T.Sakamoto M.Fujita T.
J. Org. Chem. 2006, 71: 9499 - 11
Lawrence NJ.Muhammad F. Tetrahedron 1998, 54: 15345 -
12a
Llobet A.Masllorens E.Rodriguez M.Roglans A.Benet-Buchhollz J. Eur. J. Inorg. Chem. 2004, 8: 1601 -
12b
Rodríguez D.Sestelo PS.Sarandeses LA. J. Org. Chem. 2003, 68: 2518 -
14a
Durand S.Parrain J.-L.Santelli M. J. Chem. Soc., Perkin Trans. 1 2000, 253 -
14b
Andrey O.Glanzmann C.Landais Y.Parra-Rapado L. Tetrahedron 1997, 53: 2835 -
14c
Nicolaou KC.Ramphal JY.Petasis NA.Serhan CN. Angew. Chem., Int. Ed. Engl. 1991, 30: 1100 -
15a
Basavaiah D.Sharada DS.Kumaragurubaran N.Reddy RM. J. Org. Chem. 2002, 67: 7135 -
15b
Tsukada N.Sato T.Inoue Y. Chem. Commun. 2001, 237 -
15c
Klaps E.Schmid W. J. Org. Chem. 1999, 64: 7537 -
15d
Hara R.Nishihara Y.Landre PD.Takahashi T. Tetrahedron Lett. 1997, 38: 447 -
15e
Prasad ASB.Knochel P. Tetrahedron 1997, 53: 16711 -
15f
Denmark SE.Guagnano V.Dixon JA. J. Org. Chem. 1997, 62: 4610 -
15g
Matsuhashi H.Hatanaka Y.Kuroboshi M.Hiyama T. Tetrahedron Lett. 1995, 36: 1539 -
15h
Kobayashi Y.Ikeda E. Chem. Commun. 1994, 1789 -
15i
Matsushita H.Negishi E. J. Am. Chem. Soc. 1981, 103: 2882 - 16
Kabalka GW.Al-Masum M. Org. Lett. 2006, 8: 11 - 19
Keinan E.Kumar S.Dangur V.Vaya J. J. Am. Chem. Soc. 1994, 116: 11151
References and Notes
General Procedure
for Allyl Cross-Coupling Reaction of Cinnamyl and Allyl Acetate
with Boronic Acids (Table 2): To a mixture of acetate (0.5
mmol), K2CO3 (138.2 mg, 1.0 mmol), Pd(OAc)2 (2.24
mg, 0.01 mmol), and ligand 1c (2.22 mg,
0.01 mmol) in DMF (1.5 mL) and H2O (0.5 mL) was added
boronic acid (0.6 mmol) at r.t. under an atmosphere of argon. After
1 h, the mixture was diluted with EtOAc and H2O. The
organic layer was washed with brine, dried over MgSO4,
and concentrated under reduced pressure. The residue was purified
by silica gel chromatography. All prepared compounds 3 (except
for 3e) were known and identified by ¹H
NMR, ¹³C NMR, and MS. Analytical
Data of 3e (Table 2, entry 7): colorless oil. IR (neat): 1604
cm-¹. ¹H NMR (CDCl3): δ = 2.29
(s, 6 H), 3.47 (d, J = 6.5 Hz,
2 H), 6.33 (dt, J = 15.7, 6.6
Hz, 1 H), 6.45 (d, J = 15.9
Hz, 1 H), 6.86 (s, 3 H), 7.16-7.37 (m, 5 H). ¹³C
NMR (CDCl3):
δ = 21.1, 39.2,
126.1, 126.4, 127.0, 127.8, 128.5, 129.4, 130.8, 137.5, 138.0, 140.0.
MS (EI, relative intensity): m/z = 222 (86) [M+].
HRMS (FAB-MS): m/z calcd for C17H18: 222.1409;
found: 222.1408. GC-MS purity: 98.5%.
Preparation of Hydrazone 2b: To a solution of N-aminopiperidine (0.060 g, 0.60 mmol) in MeOH (2.0 mL) was added 2-pyridinecarboxaldehyde (0.054 g, 0.51 mmol) and the mixture was stirred for 24 h at r.t. The mixture was directly concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane-EtOAc, 4:1). Yield: 0.092 g, 0.49 mmol, 96%; colorless oil. IR (neat): 1572 cm-¹. ¹H NMR (CDCl3): δ = 1.51-1.59 (m, 2 H), 1.66-1.79 (m, 4 H), 3.24 (t, J = 5.6 Hz, 4 H), 7.08-7.12 (m, 1 H), 7.59-7.64 (m, 2 H), 7.83 (dd, J = 8.1, 0.8 Hz, 1 H), 8.50 (dd, J = 4.8, 0.8 Hz, 1 H). ¹³C NMR (CDCl3): δ = 24.4, 25.4, 52.0, 119.4, 122.3, 134.3, 136.5, 149.4, 156.3. MS (EI, relative intensity): m/z = 189 (11) [M+]. HRMS (FAB-MS): m/z calcd for C11H15N3: 189.1266; found: 189.1280.
18General Procedure for Allyl Cross-Coupling Reaction of Disubstituted Allylic Acetates with 1-Naphthalene- boronic Acid (Table 3): To a mixture of acetate (0.5 mmol), Cs2CO3 (423.6 mg, 1.3 mmol), Pd(OAc)2 (5.61 mg, 0.025 mmol), and ligand 2a (5.08 mg, 0.025 mmol) in MeCN (2 mL) was added 1-naphthaleneboronic acid (103.2 mg, 0.6 mmol) at r.t. under an atmosphere of argon. After 24 h, the mixture was diluted with EtOAc and H2O. The organic layer was washed with brine, dried over MgSO4, and concentrated under reduced pressure. The residue was purified by silica gel chromatography. Compounds 3m and 3n were known and identified by ¹H NMR, ¹³C NMR, and MS.