Subscribe to RSS
DOI: 10.1055/s-0028-1083630
A Novel Approach to Stilbenoid Dendrimer Core Synthesis
Publication History
Publication Date:
12 November 2008 (online)
Abstract
A new synthetic protocol for the one-pot, stereoselective synthesis of 1,3,5-tris[(E)-4-halostyryl]benzene and 1,2,4,5-tetrakis[(E)-4-halostyryl]benzene derivatives as stilbenoid dendrimer cores via palladium-catalyzed Hiyama cross-coupling of aryl tri- or tetrahalides with 1,3-bis[(E)-4-halostyryl]disiloxanes is described.
Key words
cross-coupling - palladium catalyst - stilbenoid dendrimer cores - silicon derivatives
- For reviews, see:
-
1a
Momotake A.Arai T. J. Photochem. Photobiol., C 2004, 5: 1 -
1b
Momotake A.Arai T. Polymer 2004, 45: 5369 -
1c
Donnio B.Buathong S.Bury I.Guillon D. Chem. Soc. Rev. 2007, 36: 1495 -
1d
Lo S.-C.Burn PL. Chem. Rev. 2007, 107: 1097 - 2
Lee B.Park Y.Hwang YT.Oh W.Yoon J.Ree M. Nat. Mater. 2005, 4: 147 -
3a
Inouq K. Prog. Polym. Sci. 2000, 25: 453 -
3b
Hoover NN.Auten BJ.Chandler BD. J. Phys. Chem. B 2006, 110: 8606 - 4
Hawker CJ.Wooley KL.Frechet JMJ. J. Chem. Soc., Perkin Trans. 1 1993, 1287 -
5a
Jamnes TD.Shinmori H.Takeuchi M.Shinkai S. Chem. Commun. 1996, 705 -
5b
Mynar JL.Lowery TJ.Wemmer DE.Pines A.Frechet JMJ. J. Am. Chem. Soc. 2006, 128: 6334 -
6a
Gilat SL.Andronov A.Frechet JMJ. Angew. Chem. Int. Ed. 1999, 38: 1422 -
6b
Andronov A.Gilat SL.Frechet JMJ.Ohta K.Neuwahl FVR.Fleming GR. J. Am. Chem. Soc. 2000, 122: 1175 -
6c
Akai I.Okada A.Kanemoto K.Karasawa T.Hashimoto H.Kimura M. J. Lumin. 2006, 119: 283 -
6d
Ishida A.Makishima Y.Okada A.Akai I.Kanemoto K.Karasawa T.Kimura M.Takeda J. J. Lumin. 2008, 128: 283 -
7a
Gillies ER.Frechet JMJ. J. Am. Chem. Soc. 2002, 124: 14137 -
7b
Li S.Szalai ML.Kevwitch RM.McGrath DV. J. Am. Chem. Soc. 2003, 125: 10516 -
7c
Amir RJ.Pessah N.Shamis M.Shabat D. Angew. Chem. Int. Ed. 2003, 42: 4494 -
8a
Bettenhausen J.Strohriegl P. Adv. Mater. 1996, 8: 507 -
8b
Lupton JM.Samuel IDW.Beavington R.Bern PL.Bassler H. Adv. Mater. 2001, 13: 258 -
9a
Halim M.Pillow JNG.Samuel IDW.Burn PL. Adv. Mater. 1999, 11: 371 -
9b
Pillow JNG.Halim M.Lupton JM.Burn PL.Samuel IDW. Macromolecules 1999, 32: 5985 -
9c
Jiang Y.Wang J.-Y.Ma Y.Cui Y.-X.Zhou Q.-F.Pei J. Org. Lett. 2006, 8: 4287 -
9d
Coya C.de Andres A.Gomez R.Seoane C.Segura JL. J. Lumin. 2008, 128: 761 -
10a
Rajakumar P.Dhanasekaran M.Selvam S. Synthesis 2006, 1257 -
10b
Schulz A.Meier H. Tetrahedron 2007, 63: 11429 -
11a
Nguyen T.-C.Martini IB.Liu J.Schwartz BJJ. J. Phys. Chem. 2000, 104: 237 -
11b
Catalan J.Zimanyi L.Saltiel J. J. Am. Chem. Soc. 2000, 122: 2377 -
12a
Buhleier E.Wehner W.Vögtle F. Synthesis 1978, 155 -
12b
Hawker CJ.Frechet JMJ. J. Am. Chem. Soc. 1990, 112: 7638 -
13a
Beavington R.Frampton MJ.Lupton JM.Burn PL.Samuel IDW. Adv. Funct. Mater. 2003, 13: 211 -
13b
Mongin O.Brunel J.Porres L.Blanchard-Desce M. Tetrahedron Lett. 2003, 44: 2813 -
13c
Lehmann M.Fischbach I.Spiess HW.Meier H. J. Am. Chem. Soc. 2004, 126: 772 -
13d
Deb SK.Maddux TM.Yu L. J. Am. Chem. Soc. 1997, 119: 9079 -
13e
Sengupta S.Sadhukhan SK.Singh RS.Pal N. Tetrahedron Lett. 2002, 43: 1117 -
13f
Itami K.Tonogaki K.Ohashi Y.Yoshida J. Org. Lett. 2004, 6: 4093 -
13g
Itami K.Tonogaki K.Nokami T.Ohashi Y.Yoshida J. Angew. Chem. Int. Ed. 2006, 45: 2404 -
14a
Taylor RJK.Casy G. Org. React. (N. Y.) 2003, 59: 357 -
14b
Chow H.-F.Ng M.-K.Leung C.-W.Wang G.-X. J. Am. Chem. Soc. 2004, 126: 12907 -
15a
Hiyama T. In Metal-Catalyzed Cross-Coupling ReactionsDiederich F.Stang JP. Wiley-VCH; Weinheim: 1998. -
15b
Babudri F.Farinola GM.Lopez LC.Mattinelli MG.Naso F. J. Org. Chem. 2001, 66: 3878 -
15c
Hiyama T. In Handbook of Organopalladium Chemistry for Organic Synthesis Vol. 1:Negishi E. Wiley Interscience; New York: 2002. p.285 -
15d
Prukaa W.Majchrzak M.Pietraszuk C.Marciniec B. J. Mol. Catal. A: Chem. 2006, 254: 58 -
16a
Marciniec B.Zaidlewicz M.Pietraszuk C.Kownacki I. Comprehensive Organic Functional Group Transformations IIKatritzky AR.Taylor RJK. Elsevier; Amsterdam: 2005. -
16b
Marciniec B. Coord. Chem. Rev. 2005, 249: 2374 -
16c
Marciniec B. Acc. Chem. Res. 2007, 40: 943
References and Notes
Typical Procedure
for the Synthesis of 1,3-Bis[(
E
)-4-halostyryl]disiloxanes: The
glass reactor (10-mL, two-necked, round-bottomed flask equipped
with a magnetic stirring bar, reflux condenser, argon bubbling tube
and thermostated oil bath) was evacuated and flushed with argon. [RuH(Cl)(CO)(PPh3)3] (47.6
mg, 0.05 mmol), 1,3-divinyltetramethyldisiloxane (0.5 g, 2.5 mmol),
styrene or
4-bromo(or chloro)styrene (10 mmol) and anhyd
dioxane (5 mL) were added to the reactor. Then the reaction
mixture was stirred and heated at 100 ˚C under argon flow.
After 5 min, copper(I) chloride (CuCl; 9.9 mg, 0.1 mmol)
was added as a co-catalyst. The synthesis process was carried out for
the next 16 h. After the reaction was completed (GC-MS analysis)
the volatiles were evaporated under vacuum and the crude product
was chromatographed on silica gel (eluent: hexane-EtOAc,
10:1) to afford the analytically pure products.
1,3-Bis[(
E
)-4-bromostyryl]tetramethyldisiloxane (2): mp 56-60 ˚C. IR
(KBr): 799.5, 844.8, 985.3, 1055.5, 1253.5, 1485.7, 1604.6, 2956.9,
3020.3 cm-¹. ¹H
NMR (CDCl3): δ = 0.24 (s, 12 H, SiMe),
6.41 (d, J = 19.1 Hz, 2 H, SiCH=),
6.86 (d, J = 19.2 Hz, 2 H, PhCH=), 7.27 (d, J = 7.6
Hz, 4 H, BrC6H4), 7.43 (d, J = 8.3
Hz, 4 H, BrC6H4). ¹³C
NMR (CDCl3): δ = 0.9, 121.9, 127.9,
129.4, 131.5, 136.9, 142.9. MS (EI): m/z (%rel. int.) = 496
(7) [M+], 415 (32), 297 (60), 133
(100), 117 (37), 73 (50). HRMS: m/z [M+] calcd
for C20H24
79Br8¹BrOSi2:
495.9712; found: 495.9685.
1,3-Bis[(
E
)-4-chlorostyryl)tetramethyldisiloxane (3): mp 51-54 ˚C. IR
(KBr): 800.6, 845.1, 985.6, 1056.4, 1254.2, 1488.9, 1564.5, 1606.2,
2957.6, 3024.3 cm-¹. ¹H
NMR (CDCl3): δ = 0.25 (s, 12 H, SiMe),
6.40 (d, J = 19.2 Hz, 2 H, SiCH=),
6.88 (d, J = 19.2 Hz, 2 H, PhCH=), 7.28 (d, J = 8.8 Hz,
4 H, ClC6H4), 7.34 (d, J = 8.8
Hz, 4 H, ClC6H4). ¹³C NMR
(CDCl3): δ = 0.9, 127.6, 128.6, 129.2,
133.7, 136.5, 142.8. MS (EI): m/z (%rel. int.) = 406
(21) [M+], 281 (90), 253 (100),
227 (59), 133 (98), 117 (62), 73 (98). HRMS:
m/z [M+] calcd
for C20H24
³5Cl2OSi2:
406.0743; found: 406.0746.
Synthesis of PPV from 1,3-Bis[( E )-4-bromostyryl]tetramethyldisiloxane: [Pd2 (dba)3] (9.16 mg, 0.01 mmol), dioxane (4 mL), 1,3-bis[(E)-4-bromostyryl]tetramethyldisiloxane (2; 248 mg, 0.5 mmol), and tetrabutylammonium fluoride (320 mg, 1.2 mmol) were placed in an evacuated and flushed with argon, 10-mL flask. The mixture was heated at 80 ˚C for 12 h under an argon atmosphere. The degree of conversion of the substrates was estimated by GC and TLC analyses. Then the reaction mixture was cooled and the precipitated solid was filtered and washed extensively with acetone.
19
Typical Procedure
for the One-Pot Synthesis of 1,3,5-Tris- or 1,2,4,5-Tetrakis[(
E
)-4-halostyryl)benzenes
and Spectroscopic Data of Selected Products: The glass reactor
(10-mL, two-necked, round-bottomed flask equipped with a magnetic
stirring bar, reflux condenser, argon bubbling tube and thermostated
oil bath) was evacuated and flushed with argon. [RuH(Cl)(CO)(PPh3)3] (9.52
mg, 0.01 mmol), 1,3-divinyltetramethyldisiloxane (0.1 g, 0.5 mmol),
styrene or 4-bromo(or chloro)styrene (2.0 mmol) and anhyd dioxane
(2 mL) were added to the reactor. Then the reaction mixture was
stirred and heated at 100 ˚C under argon flow. After 5
min, CuCl (1.98 mg, 0.02 mmol) was added as a co-catalyst. The synthesis
process was carried out for the next 24 h. After the reaction was completed
(GC-MS or GC and TLC analyses), palladium catalyst [Pd2
(dba)3] (9.16
mg, 0.01 mmol), TBAF (320 mg, 1.2 mmol), dioxane (3 mL) and respective
haloarene [1,3,5-tribromobenzene (78.7 mg, 0.25 mmol) or
1,2,4,5-tetra-iodobenzene (116 mg, 0.2 mmol)] were added
and the mixture was heated at 80 ˚C (30 ˚C for
1,2,4,5-tetra-iodobenzene) for 16-48 h under an argon
atmosphere. The degree of conversion of the substrates was estimated
by GC and TLC analyses. The final product was separated using chromatography
column with silica (THF-EtOAc).
1,3,5-Tris[(
E
)-4-chlorostyryl]benzene (6): mp 216-220 ˚C. IR
(KBr): 806.3, 841.7, 960.2, 1090.4, 1490.7, 1585.1, 1668.2, 2924.2,
2957.7, 3024.9 cm-¹. ¹H
NMR (CDCl3): δ = 7.09 (d, J = 15.9 Hz, 3 H, C6H3CH=), 7.20-7.45 (m,
15 H, ClC6H4CH=), 7.65 (s, 3 H, C6H3). ¹³C
NMR (CDCl3): δ = 124.8, 125.4, 127.6,
128.1, 128.8, 133.3, 135.5, 137.7. MS (EI): m/z (%rel. int.) = 486
(8) [M+], 364 (56), 350 (47),
220 (49), 205 (100), 73 (57). HRMS: m/z [M+] calcd
for C30H21
³5Cl3:
486.0709; found: 486.0694.
1,2,4,5-Tetrakis[(
E
)-4-bromostyryl]benzene (8): mp 265-268 ˚C. IR
(KBr): 798.9, 845.4, 956.6, 1008.5, 1072.1, 1258.5, 1487.9, 1587.4,
1682.4, 1725.1, 2924.1, 2957.9, 3049.3 cm-¹. ¹H
NMR (THF-d
8): δ = 7.19
(d, J = 16.0 Hz, 4 H,
C6H2CH=),
7.50-7.58 (m, 16 H, BrC6H4), 7.67
(d, J = 16.1 Hz, 4 H, BrC6H4CH=), 7.98 (s, 2 H, C6H2). ¹³C
NMR (THF-d
8): δ = 121.9,
125.0, 127.2, 129.1, 130.9, 132.4, 136.3, 137.6. MS (EI): m/z (%rel.
int.) = 802 (5) [M+],
633 (14), 308 (20), 196 (32), 185 (64), 91 (95), 57 (100). Anal. Calcd
for C38H26Br4: C, 56.89; H, 3.27.
Found: C, 56.58; H, 3.03.
1,2,4,5-Tetrakis[(
E
)-4-chlorostyryl]benzene (9): mp 242-246 ˚C. IR
(KBr): 808.2, 853.3, 960.3, 1012.2, 1091.7, 1492.4, 1592.4, 1667.7,
1686.8, 2924.6, 2955.8, 3027.2 cm-¹. ¹H
NMR (C6D6): δ = 6.96 (d, J = 16.2 Hz, 4 H, C6H2CH=), 7.06-7.17 (m,
16 H, ClC6H4), 7.44 (d, J = 16.2 Hz,
4 H, ClC6H4CH=),
7.87 (s, 2 H, C6H2). ¹³C
NMR (C6D6): δ = 126.4, 127.1,
129.3, 129.7, 130.2, 134.2, 136.1, 138.9. MS (EI, %rel.
int.): m/z = 622
(6) [M+], 248 (32), 178 (51), 139
(68), 125 (100). Anal. Calcd for C38H26Cl4:
C, 73.09; H, 4.20. Found: C, 72.81; H, 4.01.