Subscribe to RSS
DOI: 10.1055/s-0028-1087351
Stereoselective Addition of Titanium Enolates to Functionalized Acetals: A Novel Approach to the γ-Amino Acid of Bistramides and FR252921
Publication History
Publication Date:
12 November 2008 (online)
Abstract
Dialkyl acetals containing other functional groups can participate in stereoselective coupling reactions with chiral titanium enolates. Such an approach provides the protected γ-amino acid present in bistramides and FR252921 in a highly efficient manner.
Key words
stereoselective reactions - crossed aldol-like condensation - titanium enolates - acetals - bistramide - FR252921
- 1
Misra M.Luthra R.Singh KL.Sushil K. In Comprehensive Natural Products Vol. 4:Barton DHR.Nakanishi K.Meth-Cohn O. Pergamon; Oxford: 1999. p.25 - For recent reviews on aldol reactions, see:
-
2a
Alcaide B.Almendros P. Eur. J. Org. Chem. 2002, 1595 -
2b
Modern Aldol
Reactions
Mahrwald R. Wiley-VCH; Weinheim: 2004. -
2c
Schetter B.Mahrwald R. Angew. Chem. Int. Ed. 2006, 45: 7506 - 3 For an overview on the alkylation
of alcohols, see:
Wuts PGM.Greene TW. In Protective Groups in Organic Synthesis 4th ed.: John Wiley and Sons; Hoboken: 2007. -
4a
Cosp A.Romea P.Talavera P.Urpí F.Vilarrasa J.Font-Bardia M.Solans X. Org. Lett. 2001, 3: 615 -
4b
Cosp A.Romea P.Urpí F.Vilarrasa J. Tetrahedron Lett. 2001, 42: 4629 -
4c
Cosp A.Larrosa I.Vilasís I.Romea P.Urpí F.Vilarrasa J. Synlett 2003, 1109 -
4d
Baiget J.Cosp A.Gálvez E.Gómez-Pinal L.Romea P.Urpí F. Tetrahedron 2008, 64: 5637 - 5
Cosp A.Llàcer E.Romea P.Urpí F. Tetrahedron Lett. 2006, 47: 5819 - For the synthesis of bistramides, see:
-
6a
Statsuk AV.Liu D.Kozmin SA. J. Am. Chem. Soc. 2004, 126: 9546 -
6b
Wipf P.Hopkins TD. Chem. Commun. 2005, 3421 -
6c
Crimmins MT.DeBaille AC. J. Am. Chem. Soc. 2006, 128: 4936 -
6d
Lowe JT.Wrona IE.Panek JS. Org. Lett. 2007, 9: 327 -
6e
Yadav JS.Chetia L. Org. Lett. 2007, 9: 4587 - For the synthesis of FR252921, see:
-
7a
Amans D.Bellosta V.Cossy J. Org. Lett. 2007, 9: 4761 -
7b
Falck JR.He A.Fukui H.Tsutsui H.Radha A. Angew. Chem. Int. Ed. 2007, 46: 4527 - Dimethyl acetals a and b are commercially available. The other acetals (c-f) have been prepared following standard procedures reported in the literature. See:
-
8a
Greene TW.Wuts PGM. Protective Groups in Organic Synthesis 3rd ed.: John Wiley and Sons; New York: 1999. -
8b
Kocienski PJ. Protecting Groups Thieme; Stuttgart: 1994. - 10 Dibenzyl acetals g-i have been prepared from the corresponding
dimethyl acetal, see:
Vidal-Pascual M.Martínez-Lamarca C.Hoffmann HMR. Org. Synth. 2005, 83: 61 - 11 This pattern has been established
in preceding reports mentioned in ref. 4 and was supported by structural
studies, see:
Cosp A.Larrosa I.Anglada JM.Bofill JM.Romea P.Urpí F. Org. Lett. 2003, 5: 2809 - Asymmetric anti-aldol reactions were early recognized as more challenging than the syn counterparts. For stereoselective procedures based on chiral auxiliaries, see:
-
12a
Walker MA.Heathcock CH. J. Org. Chem. 1991, 56: 5747 -
12b
Wang Y.-C.Hung A.-W.Chang C.-S.Yan T.-H. J. Org. Chem. 1996, 61: 2038 -
12c
Ghosh AK.Onishi M. J. Am. Chem. Soc. 1996, 118: 2527 -
12d
Abiko A.Liu J.-F.Masamune S. J. Am. Chem. Soc. 1997, 119: 2586 -
12e
Evans DA.Tedrow JS.Shaw JT.Downey CW. J. Am. Chem. Soc. 2002, 124: 392 -
12f
Evans DA.Downey CW.Shaw JT.Tedrow JS. Org. Lett. 2002, 4: 1127 -
12g
Fanjul S.Hulme AN.White JW. Org. Lett. 2006, 8: 4219 - For examples on the easy removal of thiazolidinethione auxiliaries, see:
-
13a
Crimmins MT.Chaudhary K. Org. Lett. 2000, 2: 775 -
13b
Zhang Y.Phillips AJ.Sammakia T. Org. Lett. 2004, 6: 23 -
13c
Wu Y.Sun Y.-P.Yang Y.-Q.Hu Q.Zhang Q. J. Org. Chem. 2004, 69: 6141 -
13d
Osorio-Lozada A.Olivo HF. Org. Lett. 2008, 10: 617 - 16
Ok T.Jeon A.Lee J.Lim J.-H.Hong C.-S.Lee H.-S. J. Org. Chem. 2007, 72: 7390
References and Notes
The stoichiometry, the reaction temperature, and time were carefully evaluated.
14Enantiomeric adducts ent-3 are obtained from ent-1, which in turn is prepared from the commercially available (R)-valinol.
15
Preparation of
Methyl Ester 8
Neat TiCl4 (0.12 mL, 1.1
mmol) was added dropwise to a solution of ent-1 (217 mg, 1.0 mmol) in CH2Cl2 (8
mL), at 0 ˚C under N2. The yellow suspension
was stirred for 5 min at 0 ˚C, cooled at -78 ˚C,
and a solution of i-Pr2NEt
(0.19 mL, 1.1 mmol) in CH2Cl2 (1 mL) was added.
The dark red enolate solution was stirred for 2 h at -50 ˚C.
Then, 1 M SnCl4 in CH2Cl2 (1.1
mL, 1.1 mmol), followed by acetal i (314
mg, 1.1 mmol) in CH2Cl2 (1 mL), was successively added
dropwise at -78 ˚C. The resulting mixture
was stirred at -78 ˚C for 30 min and
kept at -20 ˚C for 2 h. The reaction was
cooled at -78 ˚C and quenched by the
addition of sat. NH4Cl (8 mL) with vigorous stirring.
The layers were separated. The aqueous layer was re-extracted with
CH2Cl2, and the combined organic extracts
were dried (Na2SO4), filtered, concentrated,
and analyzed by HPLC. A solution of the residue and a crystal of
DMAP in MeOH (8 mL) was stirred for 3.5 h at r.t. under N2,
diluted in Et2O, and washed with 2 M NaOH, 2 M HCl, sat.
NaHCO3, and brine. The organic layer was dried (Na2SO4),
filtered, and concentrated. Purification of the resultant oil through
a pad of SiO2 (CH2Cl2) afforded
141 mg (0.38 mmol, 77% yield) of methyl ester 8. Colorless oil. R
f
= 0.2 (CH2Cl2). [α]D +16.1
(c 0.95, CHCl3). IR (film): ν = 2948,
1773, 1715, 1395, 1196, 1071 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.79-7.76
(2 H, m, ArH), 7.71-7.67 (2
H, m, ArH), 7.31-7.04 (5 H,
m, ArH), 4.57 (1 H, d, J = 11.3
Hz, PhCH
xHy), 4.52
(1 H, d, J = 11.3 Hz,
PhCHx
H
y), 4.01
(1 H, ddd, J = 7.3,
5.8, 4.5 Hz, CHOBn), 3.91-3.82
(2 H, m, CH
2N), 3.65 (3 H,
s, OCH
3), 2.85-2.76
(1 H, m, COCHCH3), 1.33 (3
H, d, J = 7.0
Hz, COCHCH
3). ¹³C
NMR (100.6 MHz, CDCl3): δ = 174.6 (C), 168.2
(C), 137.7 (C), 133.8 (CH), 132.0 (C), 128.1 (2 × CH), 127.5
(CH), 123.2 (CH), 78.3 (CH), 72.7 (CH2), 51.8 (CH3), 42.7
(CH), 38.3 (CH2), 12.6 (CH3). ESI-HRMS: m/z calcd for C21H22NO5 [M + H]+:
368.1492; found: 368.1488.
Selected Data
for Methyl Ester 11
[α]D +34.6
(c 1.3, CHCl3). IR (film): ν = 2950,
2101, 1737, 1455, 1285, 1262, 1197, 1172, 1098, 1065 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.38-7.25
(5 H, m, ArH), 4.65 (1 H, d, J = 11.3 Hz,
PhCH
xHy), 4.57
(1 H, d, J = 11.3
Hz, PhCHx
H
y), 3.83
(1 H, ddd, J = 7.5,
5.7, 3.2 Hz, CHOBn), 3.68 (3 H, s, OCH
3), 3.44 (1 H, dd, J = 13.2,
3.2 Hz, CH
xHyN3),
3.30 (1 H, dd, J = 13.2,
5.7 Hz, CHx
H
yN3),
2.92-2.84 (1 H, m, COCHCH3),
1.13 (3 H, d, J = 7.1
Hz, COCHCH
3). ¹³C
NMR (100.6 MHz, CDCl3): δ = 174.6 (C), 137.6
(C), 128.4 (CH), 127.9 (CH), 127.8 (CH), 79.9 (CH), 72.8 (CH2),
51.8 (CH3), 51.2 (CH2), 42.0 (CH), 12.7 (CH3). ESI-HRMS: m/z calcd for C13H17N3NaO3 [M + Na]+: 286.1162;
found: 286.1174.