Subscribe to RSS
DOI: 10.1055/s-0029-1217733
Efficient Synthesis of 5-Functionalised 2-Methoxypyridines and their Transformation to Bicyclic δ-Lactams, both Accessed Using Magnesium ‘Ate’ Complexes as Key Reagents
Publication History
Publication Date:
27 August 2009 (online)

Abstract
Simple and efficient synthesis of 5-functionalised 2-methoxypyridines from 5-bromo-2-methoxypyridine using [n-Bu3Mg]Li performed in noncryogenic conditions is described. Application of 5-functionalised 2-methoxypyridines in the synthesis of 1-substituted 3,6,9,9a-tetrahydroquinolizin-4-ones and 3,5,8,8a-tetrahydro-1H-quinolin-2-ones via allylation of the corresponding 5-functionalised N-allyl(or benzyl)pyridin-2-ones using [allyln-Bu2Mg]Li followed by ring-closing metathesis is presented.
Key words
magnesium ‘ate’ complexes - magnesiates - bromine-magnesium exchange - allylation - quinolizidin-4-ones - RCM
- 1
Yorimitsu H.Oshima K. The Chemistry of Organomagnesium Ate Complexes In The Chemistry of Organomagnesium CompoundsRappoport Z.Marek I. Wiley; Chichester: 2008. Chap. 15. p.681-716 -
2a
Stefan MC.Javier AE.Osaka I.McCullough RD. Macromolecules 2009, 42: 30 -
2b
Shinozuka T.Yamamoto Y.Hasegawa T.Saito K.Naito S. Tetrahedron Lett. 2008, 49: 1619 -
2c
Gallou F.Haenggi R.Hirt H.Marterer W.Schaefer F.Seeger-Weibel M. Tetrahedron Lett. 2008, 49: 5024 -
2d
Lau SYW.Hughes G.O’Shea PD.Davies IW. Org. Lett. 2007, 9: 2239 -
2e
Fleming FF.Gudipati S.Anh Viet V.Mycka RJ.Knochel P. Org. Lett. 2007, 9: 4507 -
2f
Dolman SJ.Gosselin F.O’Shea PD.Davies IW. Tetrahedron 2006, 62: 5092 -
2g
Kii S.Akao A.Iida T.Mase T.Yasuda N. Tetrahedron Lett. 2006, 47: 1877 -
2h
Buron F.Plé N.Turck A.Marsais F. Synlett 2006, 1586 -
2i
Thomas GL.Böhner C.Ladlow M.Spring DR. Tetrahedron 2005, 61: 12153 -
2j
Trost BM.Frederiksen MU.Papillon JP.Harrington PE.Shin S.Shireman BT. J. Am. Chem. Soc. 2005, 127: 3666 -
2k
Xu J.Jain N.Sui Z. Tetrahedron Lett. 2004, 45: 6399 -
2l
Therkelsen FD.Rottländer M.Thorup N.Pedersen EB. Org. Lett. 2004, 6: 1991 -
2m
Tsuji T.Nakamura T.Yorimitsu H.Shinokubo H.Oshima K. Tetrahedron 2004, 60: 973 -
2n
Ito S.Kubo T.Morita N.Matsui Y.Watanabe T.Ohta A.Fujimori K.Murafuji T.Sugihara Y.Tajiri A. Tetrahedron Lett. 2004, 45: 2891 -
2o
Shinokubo H.Oshima K. Eur. J. Org.Chem. 2004, 2081 -
2p
Dumouchel S.Mongin F.Trécourt F.Quéguiner G. Tetrahedron 2003, 59: 8629 -
2q
Fukuhara K.Takayama Y.Sato F. J. Am. Chem. Soc. 2003, 125: 6884 -
2r
Dumouchel S.Mongin F.Trécourt F.Quéguiner G. Tetrahedron Lett. 2003, 44: 3877 -
2s
Dumouchel S.Mongin F.Trécourt F.Quéguiner G. Tetrahedron Lett. 2003, 44: 2033 -
2t
Inoue A.Kondo J.Shinokubo H.Oshima K. Chem. Eur. J. 2002, 8: 1730 -
2u
Mase T.Houpis IN.Akao A.Dorziotis I.Emerson K.Hoang T.Iida T.Itoh T.Kamei K.Kato S.Kato Y.Kawasaki M.Lang F.Lee J.Lynch J.Maligres P.Molina A.Nemoto T.Okada S.Reamer R.Song JZ.Tschaen D.Wada T.Zewge D.Volante RP.Reider PJ.Tomimoto K. J. Org. Chem. 2001, 66: 6775 -
2v
Kondo J.Inoue A.Shinokubo H.Oshima K. Angew. Chem. Int. Ed. 2001, 40: 2085 -
2w
Inoue A.Kitagawa K.Shinokubo H.Oshima K. J. Org. Chem. 2001, 66: 4333 -
2x
Iida T.Wada T.Tomimoto K.Mase T. Tetrahedron Lett. 2001, 42: 4841 -
2y
Kitagawa K.Inoue A.Shinokubo H.Oshima K. Angew. Chem. Int. Ed. 2000, 39: 2481 -
3a
Sośnicki JG.Struk Ł. Synlett 2009, 1812 -
3b
Bentabed-Ababsa G.Blanco F.Derdour A.Mongin F.Trécourt F.Quéguiner G.Ballesterous R.Abarca B. J. Org. Chem. 2009, 74: 163 -
3c
Hawad H.Bayh O.Hoarau C.Trécourt F.Quéguiner G.Marsais F. Tetrahedron 2008, 64: 3236 -
3d
Mulvey RE.Mongin F.Uchiyama M.Kondo Y. Angew. Chem. Int. Ed. 2007, 46: 3802 -
3e
Bayh O.Awad H.Mongin F.Hoarau C.Bischoff L.Trécourt F.Quéguiner G.Marsais F.Blanco F.Abarca B.Ballesteros R. J. Org. Chem. 2005, 70: 5190 -
3f
Mongin F.Bucher A.Bazureau JP.Bayh O.Awad H.Trécourt F. Tetrahedron Lett. 2005, 46: 7989 -
3g
Awad H.Mongin F.Trécourt F.Quéguiner G.Marsais F.Blanco F.Abarca B.Ballesteros R. Tetrahedron 2005, 61: 4779 -
3h
Awad H.Mongin F.Trécourt F.Quéguiner G.Marsais F. Tetrahedron Lett. 2004, 45: 7873 -
3i
Awad H.Mongin F.Trécourt F.Quéguiner G.Marsais F.Blanco F.Abarca B.Ballesteros R. Tetrahedron Lett. 2004, 45: 6697 -
3j
Ide M.Nakata M. Bull. Chem. Soc. Jpn. 1999, 72: 2491 -
3k
Ide M.Yasuda M.Nakata M. Synlett 1998, 936 -
3l
Yasuda M.Ide M.Matsumoto Y.Nakata M. Bull. Chem. Soc. Jpn. 1998, 71: 1417 -
4a
Hatano M.Miyamoto T.Ishihara K. Curr. Org. Chem. 2007, 11: 127 -
4b
Hatano M.Matsumura T.Ishihara K. Org. Lett. 2005, 7: 573 -
4c
Faraks J.Richey HG. Organometallics 1990, 9: 1778 -
4d
Richery HG.DeStephano J. Tetrahedron Lett. 1985, 26: 275 -
4e
Ashby EC.Chao L.-C.Laemmle J.
J. Org. Chem. 1974, 39: 3258 -
4f
Wittig G.Meyer FJ.Lange G. Justus Liebigs Ann. Chem. 1951, 571: 167 - 5 See, for example:
Rubiralta M.Giralt E.Diez A. Piperidines. Structure, Preparation, Reactivity and Synthetic Application of Piperidines and its Derivatives Elsevier; Amsterdam: 1991. -
6a
Sośnicki JG. Synlett 2003, 1673 -
6b
Sośnicki JG.Westerlich S. Tetrahedron Lett. 2002, 43: 1325 -
7a
Sośnicki JG. Tetrahedron 2009, 65: 1336 -
7b
Sośnicki JG. Tetrahedron Lett. 2009, 50: 178 -
7c
Sośnicki JG. Tetrahedron 2007, 63: 11862 -
8a
Sośnicki JG. Tetrahedron Lett. 2005, 46: 4295 -
8b
Sośnicki JG. Tetrahedron Lett. 2006, 47: 6809 -
9a
Bowman WR.Bridge CF. Synth. Commun. 1999, 29: 4051 -
9b
Kunishima M.Friedman JE.Rokita SE. J. Am. Chem. Soc. 1999, 121: 4722 -
9c
Shiao M.-J.Lai L.-L.Ku W.-S.Lin P.-Y.Hwu JR. J. Org. Chem. 1998, 58: 4742 -
9d
Hwu JR.Wong FF.Huang J.-J.Tsay S.-C. J. Org. Chem. 1997, 62: 4097 -
9e
Hongo H.Nakano H.Okuyama Y. Heterocycles 1995, 40: 831 -
9f
Newkome GR.Kohli DK.Kawato T. J. Org. Chem. 1980, 45: 4508 - 1-Substituted quinolizidin-4-ones are biologically active species. See, for example:
-
10a
Casagrande M.Basilico N.Parapini S.Romeo S.Taramelli D.Sparatore A. Bioorg. Med. Chem. 2008, 16: 6813 -
10b
Vazanna I.Budriesi R.Terranowa E.Ioan P.Ugenti MP.Tasso B.Chiarini A.Sparatore F. J. Med. Chem. 2007, 50: 334 -
10c
Kim D.-I.Deutsch HM.Ye X.Schwerei MM. J. Med. Chem. 2007, 50: 2718 -
11a
Mahiout Z.Lomberget T.Goncalves S.Barret R. Org. Biomol. Chem. 2008, 6: 1364 -
11b
Boros EE.Burova SA.Erickson GA.Johns BA.Koble CS.Kurose N.Sharp MJ.Tabet EA.Thompson JB.Toczko MA. Org. Process Res. Dev. 2007, 11: 899 -
11c
Denton TT.Zhang X.Cashman JR. J. Med. Chem. 2005, 48: 224 -
11d
Manoso AS.Ahn C.Soheili A.Handy CJ.Correia R.Seganish WM.DeShong P. J. Org. Chem. 2004, 69: 8305 -
11e
Hodgson DM.Maxwell CR.Wisedale R.Matthews IR.Carpenter KJ.Dickenson AH.Wonnacott S. J. Chem. Soc., Perkin Trans. 1 2001, 3150 -
11f
Giblin GMP.Jones CD. Synlett 1997, 589 - See, for example:
-
12a
Humphries PS.Do TQ.-Q.Wilhite DM. Tetrahedron Lett. 2009, 50: 1765 -
12b
Wroblewski B.Wigglesworth MJ.Szekeres PG.Smith GD.Rahman SS.Nicholson NH.Muir AI.Hall A.Heer JP.Gerland SL.Coates WJ. J. Med. Chem. 2009, 52: 818 -
12c
Brown A.Brown L.Brown B.Calabrese A.Ellis D.Puhalo N.Smith CR.Wallace O.Watson L. Bioorg. Med. Chem. Lett. 2008, 18: 5242 -
12d
Ebdrup S.Hoffmann H.Refsgaard F.Fledelius C.Jacobsen P. J. Med. Chem. 2007, 50: 5449 -
12e
Qu W.Kung M.-P.Hou C.Benedum TE.Kung HF. J. Med. Chem. 2007, 50: 2157
References and Notes
Typical Procedure
of 5-Functionalisation of 2-Methoxy-pyridine
To a
cooled (0 ˚C) and stirred solution of n-BuMgCl (4.2 mmol, 2.1 mL, 2.0 M in
THF) in dry THF (4 mL) in a Schlenk flask, n-BuLi
(8.4 mmol, 3.4 mL, 2.5 M in hexane) was added via syringe over 1
min under argon, and the mixture was stirred for 5 min. To a yellow,
cooled (-2 to 0 ˚C) solution 5-bromo-2-methoxypyridine
(8.4 mmol, 1.09 mL) was added via syringe. The resulting solution
was stirred for 30 min at -2 to 0 ˚C,
then the electrophile was added (Table
[¹]
), and the mixture was
continuously stirred for 30 min at 0 ˚C and 1
h at r.t. After addition of aq sat. NH4Cl (5 mL), the
aqueous layer was extracted with EtOAc (2 × 75 mL),
and the combined organic layers were dried over MgSO4.
Filtration, concentration in vacuo, and purification by distillation
or flash column chromatography yielded compound 3.
Typical Procedure
of Transformation of 3 to Bicyclic Lactams 7
The mixture
of 3 (5.5 mmol), NaI (11 mmol), and allyl bromide
(38.5 mmol) was heated in MeCN (30 mL) at 55 ˚C for 1-6
d (see Table
[²]
).
Subsequently, the solvent was evaporated and brine containing 1% Na2S2O3 was
added. The aqueous solution was extracted with EtOAc (2 × 75 mL),
and the combined organic layers were dried over MgSO4.
Filtration, concentration in vacuo, and purification by flash column
chromatography yielded 4. To a cooled (0 ˚C)
and stirred solution of allylMgCl (4.9 mmol, 2.45 mL, 2.0 M in THF)
in dry THF (4 mL) in a Schlenk flask n-BuLi (9.8
mmol, 3.9 mL, 2.5 M in hexane) was added via syringe under argon,
the mixture was stirred for 5 min and then cooled to -72 ˚C.
The mixture containing 1b was next transferred
via syringe to a cooled (-72 ˚C) solution
of
N-allylpyridin-2-one (4, 9.0 mmol) in THF (20 mL). The resulting
solution was stirred for 20 min at -72 ˚C,
and then aq sat. NH4Cl (10 mL) was added. The aqueous
layer was extracted with EtOAc (2 × 75
mL), and the combined organic layers were dried over MgSO4.
Filtration, concentration in vacuo, and separation by flash column chromatography
yielded 5. To a solution of 1,6-diallyl lactam 5 (1.0 mmol) in dry, degassed toluene (10
mL), ruthenium catalyst 8 or 9 was added, and the reaction mixture was
stirred under slowly bubbled stream of argon at 70 ˚C.
After the reaction was complete (Table
[²]
), the solvent was evaporated
at reduced pressure, and the residue was left standing for 48 h
followed by purification on column chromatography.
Selected Spectroscopic
Data
2-Methoxy-5-trimethylsilanylpyridine
(3b)
Colorless oil. IR (film): 2956, 1586, 1556, 1488,
1352, 1286, 1250, 1116, 1026, 840 cm-¹.
MS (EI, 70 eV):
m/z (%) = 181
(32) [M+], 180 (17), 166 (100),
136 (7). ¹H NMR (400.1 MHz, CDCl3): δ = 0.26
(9 H, s, Me3Si), 3.94 (3 H, s, OCH3), 6.74
(1 H, dd, J = 8.3,
0.8 Hz, =CH-3), 7.65 (1 H, dd, J = 8.3,
1.9 Hz, =CH-4), 8.24 (1 H, dd, J = 1.8,
0.8 Hz, =CH-6). ¹³C NMR (100.6
MHz, CDCl3): δ = -1.1 (Me3Si),
53.3 (OCH3), 110.6 (CH-3), 126.3 (C-5), 143.5 (CH-4),
151.6 (CH-6), 164.8 (C-2). HRMS (EI): m/z calcd for
C9H15NOSi: 181.0923; found: 181.0922.
1-Trimethylsilanyl-3,6,9,9a-tetrahydroquinolizin-4-one (7b)
Colorless
oil. IR (film): 3036, 2960, 1666, 1644, 1468, 1444, 1404, 1296,
1254, 1116, 840, 760 cm-¹. MS (EI,
70 eV): m/z (%) = 221
(79) [M+], 220 (100), 206
(12), 152 (14), 148 (23), 124 (23), 100 (34), 73 (28). ¹H
NMR (400.1 MHz, CDCl3): δ = 0.15
(9 H, s, Me3Si), 2.00-2.10 (1 H, m, CHH-9),
2.34 (1 H, dm, J = ca.
17.1 Hz, CHH-9), 2.97-3.01 (2 H, m, CH2-3),
3.42 (1 H, dm, J = ca.
18.3 Hz, CHH-6), 4.16 (1 H, dq, J = 11.5,
3.4 Hz, CH-9a), 5.06 (1 H, dm, J = 18.3
Hz, CHH-6), 5.69-5.76 (1 H, m, =CH-7), 5.76-5.83
(1 H, m, =CH-8), 6.02 (1 H, ddd, J = 4.2,
3.2, 1.0 Hz, =CH-2). ¹³C NMR
(100.6 MHz, CDCl3): δ = -1.1
(Me3Si), 32.9 (CH2-3), 34.1 (CH2-9),
41.7 (CH2-6), 57.6 (CH-9a), 124.8 (=CH-8), 125.0
(=CH-7), 131.1 (=CH-2), 137.21 (C-1), 166.1 (C-4). HRMS
(EI): m/z calcd for C12H19NOSi:
221.1236; found: 221.1234.