Synlett 2010(9): 1323-1326  
DOI: 10.1055/s-0029-1219827
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Concise Synthesis of 6-Amino-6-deoxy-DNJ and 6-Amino-1,6-dideoxy-l-­talonojirimycin

Juan A. Tamayo*, Francisco Franco, Daniele Lo Re
Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
Fax: +34(958)243845; e-Mail: jtamayo@ugr.es;
Further Information

Publication History

Received 4 March 2010
Publication Date:
15 April 2010 (online)

Abstract

A concise and straightforward synthesis of two amino-DNJ derivatives, 6-amino-6-deoxy-DNJ and 6-amino-1,6-dideoxy-l-talonojirimycin is described from a commercial and cheap starting material. The methodology employed takes advantage of dia­stereoselective reductive amination to achieve the two non-natural iminosugars in three and five steps, respectively.

    References and Notes

  • 1a Compain P. Martin OR. Iminosugars: From Synthesis to Therapeutic Applications   Wiley & Sons; Chichester: 2007. 
  • 1b Bols M. Lillelund VH. Jensen HH. Liang X. Chem. Rev.  2002,  102:  515 
  • 1c Zechel DL. Withers SG. Acc. Chem. Res.  2000,  33:  11 
  • 1d Asano N. Nash RJ. Molyneux RJ. Fleet GWJ. Tetrahedron: Asymmetry  2000,  11:  1645 
  • 1e Rye CS. Withers SG. Curr. Opin. Chem. Biol.  2000,  4:  573 
  • 1f Iminosugars as Glycosidase Inhibitors   Stütz AE. Wiley-VCH; Weinheim: 1999. 
  • 1g Vasella AT. Heightman TD. Angew. Chem. Int. Ed.  1999,  38:  750 
  • 1h Withers SG. Namchuk M. Mosi R. In Iminosugars as glycosidase inhibitors: Nojirimicyn and Beyond   Stütz AE. Wiley-VCH; Weinheim: 1999.  Chap. 9. p.188-206  
  • 1i Sinnot ML. Chem. Rev.  1990,  90:  1171 
  • 1j Bennet AJ. Sinnot ML. J. Am. Chem. Soc.  1986,  108:  7287 
  • For medical applications of iminosugars, see:
  • 2a Wrodnigg TM. Steiner AJ. Ueberbacher BJ. Anti-Cancer Agents Med. Chem.  2008,  8:  77 
  • 2b Gerber-Lemaire S. Juillerat-Jeanneret L. Mini-Rev. Med. Chem.  2006,  6:  1043 
  • 2c Robina I. Moreno-Vargas AJ. Carmona AT. Vogel P. Curr. Drug Metab.  2004,  5:  329 
  • 2d Greimel P. Spreitz J. Stütz AE. Wrodnigg TM. Curr. Top. Med. Chem.  2003,  3:  513 
  • 2e Fan J.-Q. Trends Pharmacol. Sci.  2003,  24:  355 
  • 2f Asano N. Glycobiology  2003,  13:  93R 
  • 2g Full issue, guest editors Martin OR. Compain P. Curr. Top. Med. Chem.  2003,  3(5): 
  • 2h Watson AA. Fleet GWJ. Asano N. Molyneux RJ. Nash RJ. Phytochemistry  2001,  56:  265 
  • 2i Butters TD. Dwek RA. Platt FM. Chem. Rev.  2000,  100:  4683 
  • For reviews, see:
  • 3a Afarinkia K. Bahar A. Tetrahedron: Asymmetry  2005,  16:  1239 
  • 3b Pearson MSM. Mathé-Allainmat M. Fargeas V. Lebreton J. Eur. J. Org. Chem.  2005,  2159 
  • 3c Ayad T. Genisson Y. Baltas M. Curr. Org. Chem.  2004,  8:  1211 
  • 3d Weintraub PM. Sabol JS. Kane JM. Borcherding DR. Tetrahedron  2003,  59:  2953 
  • 3e Dhavale DD. Desai VN. Saha NN. Tilekar JN. ARKIVOC  2002,  (vii):  91 
  • 3f Yoda H. Curr. Org. Chem.  2002,  6:  223 
  • 3g Kazmaier U. Recent Res. Dev. Org. Chem.  1998,  2:  351 
  • For recent syntheses of DNJ, see:
  • 6a Danoun G. Ceccon J. Greene AE. Poisson J.-F. Eur. J. Org. Chem.  2009,  4221 
  • 6b Racine E. Bello C. Gerber-Lemaire S. Vogel P. Py S. J. Org. Chem.  2009,  74:  1766 
  • 6c Ruiz M. Ruanova TM. Blanco O. Núñez F. Pato C. Ojea V. J. Org. Chem.  2008,  73:  2240 
  • 6d Malle BM. Lundt I. Wrodnigg TM. Org. Biomol. Chem.  2008,  6:  1779 
  • 6e Zhou Y. Murphy PV. Org. Lett.  2008,  10:  3777 
  • 6f Sugiyama M. Hong Z. Liang P.-H. Dean SM. Whalen LJ. Greenberg WA. Wong C.-H. J. Am. Chem. Soc.  2007,  129:  14811 
  • 6g Kim IS. Lee HY. Jung YH. Heterocycles  2007,  71:  1787 
  • 6h Song X. Hollingsworth RI. Tetrahedron Lett.  2007,  48:  3115 
  • 6i Boucheron C. Compain P. Martin OR. Tetrahedron Lett.  2006,  47:  3081 
  • 6j Thomassigny C. Barroso MT. Greck C. Lett. Org. Chem.  2005,  2:  316 
  • 6k Tite T. Lallemand M.-C. Poupon E. Kunesch N. Tillequin F. Gravier-Pelletier C. Merrer YL. Husson H.-P. Bioorg. Med. Chem.  2004,  12:  5091 
  • 6l Takahata H. Banba Y. Sasatani M. Nemoto H. Kato A. Adachi I. Tetrahedron  2004,  60:  8199 
  • 6m McDonnell C. Cronin L. O’Brien JL. Murphy PV. J. Org. Chem.  2004,  69:  3565 
  • 6n

    For selected syntheses of DNJ isomers, see ref. 6b, 6c and references therein, and refs 6d, 6f, 6g, 6h, and 6i

  • See ref. 6j, and:
  • 7a Pampín MB. Fernández F. Estévez JC. Estévez RJ. Tetrahedron: Asymmetry  2009,  20:  503 
  • 7b Poupon E. Luong B.-X. Chiaroni A. Kunesch N. Husson H.-P. J. Org. Chem.  2000,  65:  7208 
  • 7c Kilonda A. Compernolle F. Peeters K. Joly GJ. Toppet S. Hoornaert GJ. Tetrahedron  2000,  56:  1005 
  • 7d McCort I. Fort S. Dureault A. Depezay J.-C. Bioorg. Med. Chem.  2000,  8:  135 
  • 7e Kilonda A. Compernolle F. Hoornaert GJ. J. Org. Chem.  1995,  60:  5820 
  • 7f Kilonda A. Compernolle F. Toppet S. Hoornaert GJ. J. Chem. Soc., Chem. Commun.  1994,  2147 
  • 7g Paulsen H. Steinert G. Chem. Ber.  1967,  100:  2467 
  • 8a Lo Re D. Franco F. Sánchez-Cantalejo F. Tamayo JA. Eur. J. Org. Chem.  2009,  1984 
  • 8b Izquierdo I. Tamayo JA. Rodríguez M. Franco F. Lo Re D. Tetrahedron  2008,  64:  7910 
  • 8c Izquierdo I. Plaza MT. Tamayo JA. Mota JA. Synthesis  2004,  1083 
  • 8d Izquierdo I. Plaza MT. Robles R. Mota AJ. Franco F. Tetrahedron: Asymmetry  2001,  12:  2749 
  • Starting material 8 was purchased from Carbosynth Limited (http://www.carbosynth.com). Alternatively, it can be synthesized as described in the following references:
  • 9a Meng X.-B. Li Y.-P. Li Z.-J. J. Chin. Pharm. Sci.  2007,  16:  43 
  • 9b An J.-N. Meng X.-B. Yao Y. Li Z.-J. Carbohydr. Res.  2006,  341:  2200 
  • 9c Lee CK. Carbohydr. Res.  1987,  170:  255 
  • 9d Tokuyama K. Bull. Chem. Soc. Jpn.  1964,  37:  1133-1137  
  • 9e Morgan WThJ. Reichstein T. Helv. Chim. Acta  1938,  21:  1023 
  • 11a Izquierdo I. Plaza M.-T. Robles R. Mota AJ. Eur. J. Org. Chem.  2000,  2071 
  • 11b Izquierdo I. Plaza M.-T. Robles R. Rodríguez C. Ramírez A. Mota AJ. Eur. J. Org. Chem.  1999,  1269 
  • 12a von der Osten C.-H. Sinskey AJ. Barbas AF. Pederson RL. Wang Y.-F. Wong C.-H. J. Am. Chem. Soc.  1989,  111:  3924 
  • 12b Kajimoto T. Chen L. Liu KK.-C. Wong C.-H. J. Am. Chem. Soc.  1991,  113:  6678 
4

Zavesca® or Miglustat® (N-butyl-1-deoxynojirimycin) for Gaucher’s disease.

5

Miglitol® [(2R,3R,4R,5S)-1-(2-hydroxyethyl)-2-(hydroxymethyl)piperidine-3,4,5-triol] for diabetes.

10

Synthesis of (2 R ,3 R ,4 R ,5 S )-2-(aminomethyl)-3,4,5-piperidinetriol dihydrochloride [(6-amino-6-deoxy-DNJ) or (6-amino-1,5-imino-1,5,6-trideoxy- d -glucitol) 4] from diazido intermediate 6: A solution of 6 (206 mg, 0.76 mmol) in 50% aq TFA (3 mL) was stirred at r.t. for 24 h. The mixture was evaporated and codistilled with water and toluene several times. The final residue was subjected to a short flash chromatography column (Et2O) to give 10, which was used directly in the next step without further purification. IR: 3399 (OH), 2109 (N3) cm.
A solution of compound 10 (142 mg, 0.62 mmol)in anhydrous MeOH (20 mL) was hydrogenated at 60 psi over 10% Pd/C (35 mg) for 24 h. The catalyst was filtered off, washed with MeOH and the resulting filtrate evaporated. The residue was transferred to a Dowex 50W×8 (200-400 mesh) column that was eluted with MeOH (30 mL), H2O (20 mL) and 7% NH4OH (40 mL), consecutively. After evaporation of the solvent the residue was acidified with 10% aqueous HCl (10 mL) and then evaporated to afford 4 (94 mg, 65% from 6) as a reddish foam; [α]D ²³ +10 (c 0.25, H2O). ¹H NMR (500 MHz, D2O): δ = 3.67 (ddd, J 1,2 = 9.5, J 1 ,2 = 11.8, J 2,3 = 5.2 Hz, 1 H, H-2), 3.56 (t, J 3,4 = J 4,5 = 9.3 Hz, 1 H, H-4), 3.49-3.37 (m, 4 H, H-1,3,5,6), 3.29 (dd, J 5,6 = 4.4, J 6,6  = 13.2 Hz, 1 H, H-6′), 2.90 (t, J 1,1  = 11.8 Hz, 1 H, H-1′). ¹³C NMR (125 MHz, D2O): δ = 78.3 (C-3), 73.5 (C-4), 68.9 (C-2), 57.8 (C-5), 48.8 (C-1), 41.9 (C-6). HRMS (ES): m/z [M + H]+ calcd for C6H15N2O3: 163.1083; found: 163.1079

13

Synthesis of (2 S ,3 R ,4 S ,5 S )-2-(aminomethyl)-3,4,5-piperidinetriol dihydrochloride [(6-amino-1,6-dideoxy- l - talo nojirimycin) or (6-amino-1,5-imino-1,5,6-trideoxy- l -talitol) 5] from diazido intermediate 7: A solution of 7 (216 mg, 0.8 mmol) in 50% aqueous TFA (4 mL) was stirred at r.t. for 18 h. The mixture was evaporated and codistilled with water and toluene several times. The final residue was subjected to a short flash chromatography column (Et2O) to give 12, which was used directly in the next reaction without further purification. IR (KBr): 3391 (OH), 2106 (N3) cm.
A solution of compound 12 (95 mg, 0.41 mmol)in anhydrous MeOH (20 mL) was hydrogenated at 60 psi over 10% Pd/C (25 mg) for 24 h. The catalyst was filtered off, washed with MeOH and evaporated. The residue was transferred to a Dowex 50W×8 (200-400 mesh) column that was eluted with MeOH (30 mL), H2O (20 mL) and 7% NH4OH (40 mL), consecutively. After evaporation of the solvent, the residue was acidified with 10% aqueous HCl (10 mL) and then evaporated to afford 5 (71 mg, 73%) as a reddish foam; [α]D ²4 +33 (c 0.25, H2O).¹H NMR (400 MHz, D2O): δ = 4.31 (br s, 2 H, H-2,4), 3.96 (t, J 3,4 = J 2,3 = 3.3 Hz, 1 H, H-3), 3.79 (m, 1 H, H-5), 3.67-3.59 (m, 2 H, H-1,6), 3.50 (dd, J 5,6 = 5.7, J 6,6  = 13.9 Hz, 1 H, H-6′), 3.40 (br d, 1 H, H-1′). ¹³C NMR (100 MHz, D2O): δ = 70.2 (C-2 or 4), 69.5 (C-3), 68.4 (C-2 or 4), 58.3 (C-5), 51.0 (C-1), 40.6 (C-6). HRMS (ES): m/z [M + H]+ calcd for C6H15N2O3: 163.1083; found: 163.1082