Subscribe to RSS
DOI: 10.1055/s-0030-1259095
Total Synthesis of Rutaecarpine and Analogues by Tandem Azido Reductive Cyclization Assisted by Microwave Irradiation
Publication History
Publication Date:
10 December 2010 (online)
Abstract
The total synthesis of rutaecarpine and several analogues has been developed by using an azido reductive cyclization process starting from substituted azido benzoic acids. The intramolecular azido reductive cyclization step was performed with triphenylphosphine or Ni2B in HCl-MeOH (1 M) using microwave irradiation. This synthetic route is amenable for the generation of a library of quinazolinone compounds.
Key words
quinazolinones - β-carbolines - azido-reductive cyclization - Ni2B - microwave irradiation
- 1
Mhaske SB.Argade P. Tetrahedron 2005, 62: 9787 - 2
Takaya Y.Tasaka H.Chiba T.Uwai K.Tanitsu M.-A.Kim H.-S.Wataya Y.Miura M.Takeshita M.Oshima Y. J. Med. Chem. 1999, 42: 3163 -
3a
Gupta CM.Bhaduri AP.Khanna NM. J. Med. Chem. 1968, 11: 392 -
3b
Welch WM.Ewing FE.Huang J.Menniti FS.Pagnozzi MJ.Kelly K.Seymoyr PA.Guanowsky V.Guhan S.Guinn MR.Critchett D.Lazzaro J.Ganong AH.DeVries KM.Staigers TL.Chenard BL. Bioorg. Med. Chem. Lett. 2001, 11: 177 - 4
Kung P.-P.Casper MD.Cook KL.Wilson-Lingard L.Risen LM.Vickers TA.Ranken R.Blyn LB.Wyatt R.Cook PD.Ecker DJ. J. Med. Chem. 1999, 42: 4705 - 5
Malamas MS.Millen J. J. Med. Chem. 1991, 34: 1492 - 6
Fetter J.Czuppo T.Hornyak G.Feller A. Tetrahedron 1991, 47: 9393 -
7a
Padala SR.Padi PR.Thipireddy V. Heterocycles 2003, 60: 183 -
7b
Larksarp C.Alper H. J. Org. Chem. 2000, 65: 2773 -
7c
Wang L.Xia J.Qin F.Qian C.Sun J. Synthesis 2003, 1241 -
7d
Dabiri M.Salehi P.Khajavi MS.Mohammadi AA. Heterocycles 2004, 63: 1417 -
7e
Bhat BA.Sahu DP. Synth. Commun. 2004, 34: 2169 -
7f
Connoly DJ.Cusack D.O’Sullivan TP.Guiry PJ. Tetrahedron 2005, 61: 10153 -
7g
Potewar TM.Nadaf RN.Daniel T.Lahoti RJ.Srinivasan KV. Synth. Commun. 2005, 35: 231 -
7h
Liu J.-F.Lee J.Dalton AM.Bi G.Yu L.Baldino CM.McElory E.Brown M. Tetrahedron Lett. 2005, 46: 1241 -
8a
Wu SN.Lo YK.Chen H.Li HF.Chiang HT. Neuropharmacology 2001, 41: 834 -
8b
Sheu JR.Hung WC.Wu CH.Lee YM.Yen MH. Br. J. Haematol. 2000, 110: 110 -
8c
Wang GJ.Shan J.Pang PKT.Yang MCM.Chou CJ.Chen CF. J. Pharmacol. Exp. Ther. 1996, 270: 1016 - 9
Don MJ.Lewis DFV.Wang SY.Tsai MW.Ueng YF. Bioorg. Med. Chem. Lett. 2003, 13: 2535 - 10
Baruah B.Dasu K.Valtilingam B.Mamnoor P.Venkata PP.Rajagopal S.Yeleswarapu KR. Bioorg. Med. Chem. 2004, 12: 1991 - 11
Chang HW.Kim SI.Jung H.Jahng Y. Heterocycles 2003, 60: 1359 - 12
Asahina Y. Acta Phytochim. 1922, 1: 67 - 13
Kamikado T.Murakoshi S.Tamura S. Agric. Biol. Chem. 1978, 42: 1515 - 14
Bergman J. The Alkaloids, In The Quinazolinocarboline alkaloids Vol. 21:Brossi AR. Academic Press; New York: 1983. p.29-54 -
15a
Ikuta A.Urabe H.Nakamura T. J. Nat. Prod. 1998, 61: 1012 -
15b
Ikuta A.Nakamura T.Urabe H. Phytochemistry 1998, 48: 285 - 16
Michael JP. Nat. Prod. Rep. 1999, 16: 697 - 17
Chen AL.Chen KK. J. Am. Pharm. Assoc. 1933, 22: 716 -
18a
King CL.Kong YC.Wong NS.Yeung HW.Fong HHS.Sankawa U. J. Nat. Prod. 1980, 43: 577 -
18b
Gillner M.Bergman J.Cambillau C.Gustafsson J.-A. Carcinogenesis 1989, 10: 651 -
18c
Rannug U.Sjógren M.Rannug A.Gillner M.Toftgard R.Gustafsson JA.Rosenkranz H.Klopman G. Carcinogenesis 1991, 12: 2007 -
18d
Matsuda H.Yoshikawa M.Ko S.Iinuma M.Kubo M. Nat. Med. 1998, 52: 203 -
18e
Hibino S.Choshi T. Nat. Prod. Rep. 2001, 18: 66 - 19
Asahina Y.Manske RHF.Robinson R. J. Chem. Soc. 1927, 1708 - 20
Mhaske SB.Argade NP. Tetrahedron 2004, 60: 3417 ; and references cited therein -
21a
Kökösi J.Hermecz I.Szász G.Mészáros Z. Tetrahedron Lett. 1981, 22: 4861 -
21b
Kökösi J.Szász G.Hermecz I. Tetrahedron Lett. 1992, 33: 2995 -
21c
Lee SH.Kim SI.Park JG.Lee ES.Jahng Y. Heterocycles 2001, 55: 1555 -
21d
Chang HW.Kim SI.Jung H.Jahng Y. Heterocycles 2003, 60: 1359 -
21e
Chavan SP.Sivappa R. Tetrahedron Lett. 2004, 45: 997 - 22
Lee ES.Park J.-G.Jahng Y. Tetrahedron Lett. 2003, 44: 1883 - 23
Pereira M.-F.Picot L.Guillon J.Léger J.-M.Jarry CR.Thiéry V.Besson T. Tetrahedron Lett. 2005, 46: 3445 -
24a
Kametani T.Higa T.Von Loc C.Ihara M.Koizumi M.Fukumoto K. J. Am. Chem. Soc. 1976, 98: 6186 -
24b
Kametani T.Von Loc C.Higa T.Koizumi M.Ihara M.Fukumoto K. J. Am. Chem. Soc. 1977, 99: 2306 -
24c
Bergman J.Bergman S. J. Org. Chem. 1985, 50: 1246 -
24d
Mohanta PK.Kim K. Tetrahedron Lett. 2002, 43: 3993 -
24e
Harayama T.Hori A.Serban G.Morikami Y.Matsumoto T.Abe H.Takeuchi Y. Tetrahedron 2004, 60: 10645 - 25
Lee CS.Liu CK.Chiang YL.Cheng YY. Tetrahedron Lett. 2008, 49: 481 -
26a
Kamal A.Markandeya N.Shankaraiah N.Reddy ChR.Prabhakar S.Reddy ChS.Eberlin MN.Santos LS. Chem. Eur. J. 2009, 15: 7214 -
26b
Shankaraiah N.Markandeya N.Moraga ME.Arancibia C.Kamal A.Santos LS. Synthesis 2009, 2163 -
26c
Kamal A.Shankaraiah N.Markandeya N.Reddy ChS. Synlett 2008, 1297 -
26d
Kamal A.Devaiah V.Reddy KL.Shankaraiah N. Adv. Synth. Catal. 2006, 348: 249 -
26e
Kamal A.Shankaraiah N.Reddy KL.Devaiah V. Tetrahedron Lett. 2006, 47: 4253 -
26f
Kamal A.Devaiah V.Shankaraiah N.Reddy KL. Synlett 2006, 2609 -
26g
Kamal A.Shankaraiah N.Devaiah V.Reddy KL. Tetrahedron Lett. 2006, 47: 9025 -
26h
Kamal A.Ramana KV.Rao MV. J. Org. Chem. 2001, 66: 997 -
26i
Kamal A.Damayanthi Y.Reddy BSN.Lakshminarayana B.Reddy BSP. Chem. Commun. 1997, 1015 -
27a
Kappe CO. Angew. Chem. Int. Ed. 2004, 43: 6250 -
27b
Lew A.Krutzik PO.Hart ME.Chamberlin AR. J. Comb. Chem. 2002, 4: 95 -
27c
Kaddar H.Hamelin J.Benhaoua H. J. Chem. Res. 1999, 718 -
28a
Silva WA.Rodrigues MT.Shankaraiah N.Ferreira RB.Andrade CKZ.Pilli RA.Santos LS. Org. Lett. 2009, 11: 3238 -
28b
Shankaraiah N.Santos LS. Tetrahedron Lett. 2009, 50: 520 -
28c
Shankaraiah N.Silva WA.Andrade CKZ.Santos LS. Tetrahedron Lett. 2008, 49: 4289
References and Notes
Coupling reaction procedure for {2-azidophenyl)-(1-methylene-3,4-dihydro-1H-pyrido[3,4-b]indol-2 (9H)-yl}methanone (5a): To a stirred solution of 3 (0.250 g, 1.53 mmol) in CH2Cl2 (10 mL) was added Et3N (0.22 mL, 1.63 mmol) dropwise at 0 ˚C over 10 min, then 2-azidobenzoyl chloride (0.295 g, 1.62 mmol) dissolved in CH2Cl2 (5 mL) was added at the same temperature. The reaction was brought to r.t. and stirred for another 2 h. After completion of the reaction, the solvent was evaporated and extracted with CH2Cl2 (3 × 20 mL), washed with aqueous NaHCO3 followed by brine, separated, and dried over anhydrous Na2SO4. The combined organic extracts were evaporated under reduced pressure and further purified by column chromatography with EtOAc-hexane (1:1) as eluent to afford 5a in 84% yield as a white solid; mp 86-88 ˚C. IR (KBr): 3381, 2105, 1638, 1415 cm-¹; ¹H NMR (300 MHz, CDCl3): δ = 8.12 (br s, 1 H), 7.53 (d, J = 7.55 Hz, 1 H), 7.36-7.43 (m, 2 H), 7.32 (d, J = 7.55 Hz, 1 H), 7.20-7.25 (m, 1 H), 7.11-7.16 (m, 3 H), 4.93 (s, 1 H), 4.07 (s, 1 H), 4.00 (t, J = 8.58, 9.09 Hz, 2 H), 3.24 (t, J = 8.08 Hz, 2 H); ¹³C NMR (75 MHz, CDCl3): δ = 167.6, 136.9, 132.3, 132.1, 130.3, 129.1, 128.2, 126.7, 125.1, 124.7, 123.5, 119.9, 119.0, 118.4, 112.0, 111.1, 101.8, 41.1, 29.6; HRMS (ESI): m/z [M + Na]+ calcd for C19H15N5O: 352.1174; found: 352.1182.
30Oxidation reaction procedure for 2-(2-azidobenzoyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-one (6a): To a stirred solution of 5a (0.400 g, 1.13 mmol) in anhydrous acetone (20 mL) was added KMnO4 (0.264 g, 1. 70 mmol) at r.t. and the mixture was stirred for 12 h. The solvent was evaporated under reduced pressure and the reaction mixture was diluted with EtOAc (40 mL) and filtered through Celite. The organic layer was washed with aqueous NaHCO3 followed by brine and dried over anhydrous Na2SO4. After filtration and evaporation, the crude product was purified by column chromatography, eluting with EtOAc-hexane (7:3) to afford 6a in 67% yield as a white solid; mp 87-90 ˚C. IR (KBr): 3421, 2111, 1697, 1634 cm-¹; ¹H NMR (400 MHz, CDCl3): δ = 8.18 (br s, 1 H), 7.84 (d, J = 7.84 Hz, 1 H), 7.63-7.59 (m, 2 H), 7.38-7.32 (m, 1 H), 7.23-7.20 (m, 2 H), 7.18 (d, J = 7.55 Hz, 1 H), 7.16-7.19 (m, 1 H), 4.43 (br, 2 H), 3.24 (t, J = 8.10 Hz, 2 H); ¹³C NMR (100 MHz, CDCl3): δ = 167.9, 161.2, 142.6, 137.8, 132.6, 130.1, 129.5, 128.1, 126.5, 124.8, 124.6, 123.4, 119.8, 118.9, 118.0, 101.9, 41.9, 21.7; HRMS (ESI): m/z [M]+ calcd for C18H13N5O2Na: 354.3186; found: 354.3207.
31Typical procedure for preparation
of rutaecarpine (1a): A mixture of 6a (0.100 g, 0.302 mmol) in MeOH (2.0 mL)
and Ni2B (0.114 g, 0.906 mmol) and 1.0 M HCl (1.0 mL)
in a glass tube was placed in a microwave reactor (CEM Discovery
LabMate) and irradiated at 70 W for 2 min, during
which time the temperature was kept at 52 ˚C with cooling.
The reaction mixture was brought to ambient temperature and the
solvent was evaporated, the residue was neutralized with saturated
aqueous 5% NaHCO3 solution, and then extracted
with EtOAc (3 × 25 mL). The combined organic
phases were washed with brine, dried over Na2SO4, filtered
and evaporated under reduced pressure. The crude product thus obtained
was purified by column chroma-tography on silica (60-120
mesh) to afford the final compound 1a (0.072
g, 90%); mp 254-255 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 9.25 (br
s, 1 H), 8.33 (dd, J = 1.23, 7.85 Hz,
1 H), 7.62-7.74 (m, 3 H), 7.43-7.69
(m, 2 H), 7.35 (dt, J = 1.22,
6.85 Hz, 1 H), 7.20 (t, J = 8.44 Hz,
1 H), 4.57 (t, J = 6.96 Hz,
2 H), 3.25 (t, J = 6.95 Hz,
2 H); ¹³C NMR (100 MHz, CDCl3): δ = 161.6,
147.5, 144.9, 138.2, 134.3, 127.2, 126.6, 126.1, 125.6, 125.5, 121.3,
120.6, 120.1, 118.3, 112.1, 19.6, 41.1, 20.2; HRMS (ESI): m/z [M + H]+
˙
calcd for C18H13N3O:
287.1054; found: 287.1057.
Euxylophoricine A (1b): Yield: 0.043 g (82%); mp
293-295 ˚C; ¹H NMR
(300 MHz, CDCl3): δ = 9.25 (br s, 1 H), 7.65
(s, 1 H), 7.63 (d, J = 8.1 Hz,
1 H), 7.44 (d, J = 8.1 Hz, 1 H),
7.35 (dd, J = 7.8,
8.1 Hz, 1 H), 7.20 (t, J = 7.8 Hz, 1 H),
7.06 (s, 1 H), 4.60 (t, J = 7.0 Hz,
2 H), 4.01 (s, 3 H), 3.99 (s, 3 H), 3.24
(t, J = 7.0 Hz,
2 H); ¹³C NMR (75 MHz, CDCl3): δ = 161.1,
155.1, 148.7, 143.9, 143.6, 138.2, 127.3, 125.7, 125.3, 120.6, 119.9,
117.6, 114.5, 111.9, 107.1, 106.4, 56.3, 56.2, 41.1, 19.6; HRMS: m/z [M + H]+
˙
calcd for C20H17N3O3:
347.1263; found: 347.1266.
Euxylophoricine C (1c): Yield: 0.041 g (80%); mp
307-309 ˚C; ¹H NMR
(300 MHz, CDCl3): δ = 9.10 (br s, 1 H), 7.65
(s, 1 H), 7.64 (d, J = 6.95 Hz,
1 H), 7.44 (d, J = 6.92 Hz,
1 H), 7.36 (t, J = 6.95 Hz,
1 H), 7.20 (t, J = 6.9 Hz,
1 H), 7.06 (s, 1 H), 6.10 (s, 2 H), 4.57
(t, J = 6.9 Hz,
2 H), 3.27 (t, J = 6.9 Hz,
2 H); ¹³C NMR (75 MHz, CDCl3): δ = 160.9,
153.5, 147.1, 143.9, 143.8, 138.1, 127.2, 125.7, 125.4, 120.6, 120.0,
117.6, 116.1, 111.9, 105.9, 104.2, 102.5, 41.8, 19.8; HRMS: m/z [M + H]+
˙
calcd for C19H13N3O3:
331.0955; found: 331.0961.