Synlett 2016; 27(02): 294-300
DOI: 10.1055/s-0035-1560576
letter
© Georg Thieme Verlag Stuttgart · New York

Conformationally Flexible C 3-Symmetric 1,3-Oxazoles as Molecular Scaffolds

Shailesh R. Shah*
a   Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara 390002, India   Email: shailesh-chem@msubaroda.ac.in
,
Ruchita R. Thakore
a   Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara 390002, India   Email: shailesh-chem@msubaroda.ac.in
,
Trupti A. Vyas
a   Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara 390002, India   Email: shailesh-chem@msubaroda.ac.in
,
Balasubramanian Sridhar
b   Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
› Author Affiliations
Further Information

Publication History

Received: 09 July 2015

Accepted after revision: 03 September 2015

Publication Date:
15 October 2015 (online)


Dedicated to Professor Leo Paquette on the occasion of his 81st birthday

Abstract

Flexible-arm, C 3-symmetric tris-oxazoles are synthesized for their applications in supramolecular chemistry and materials science. The C 3-symmetry is introduced starting from 1,3,5-trimethylbenzene and carrying out threefold reactions at each stage of the synthesis. The applicability of these tris-oxazoles is demonstrated by transforming a representative example into a highly fluorescent material. This is accomplished by conjugation with an aromatic moiety via palladium(0)-catalyzed direct arylation at C-2 of the oxazole. A unique molecular arrangement in the crystal structure is observed.

Supporting Information

 
  • References and Notes

    • 1a Moberg C. Angew. Chem. Int. Ed. 1998; 37: 248
    • 1b Gibson SE, Castaldi MP. Angew. Chem. Int. Ed. 2006; 45: 4718
    • 1c Gibson SE, Castaldi MP. Chem. Commun. 2006; 3045
    • 2a Dash J, Trawny D, Rabe JP, Reissing HU. Synlett 2015; 26: 1486
    • 2b Shokri A, Deng SH. M, Wang XB, Kass SR. Org. Chem. Front. 2014; 1: 54
    • 2c Wang X, Hof F. Beilstein J. Org. Chem. 2012; 8: 1
    • 2d Dai Z, Canary JW. New J. Chem. 2007; 31: 1708
    • 2e Nativi C, Cacciarini M, Francesconi O, Vacca A, Moneti G, Ienco A, Roelens S. J. Am. Chem. Soc. 2007; 129: 4377
    • 2f Kuswandi B, Nuriman Verboom W, Reinhoudt DN. Sensors 2006; 6: 978
    • 3a Bera M, Ghosh TK, Akhuli B, Ghosh P. J. Mol. Catal. A: Chem. 2015; 408: 287
    • 3b Murai K, Nakamura A, Matsushita T, Shimura M, Fujioka H. Chem. Eur. J. 2012; 18: 8448
    • 3c Moorthy JN, Saha S. Eur. J. Org. Chem. 2010; 6359
    • 3d Liu YR, He L, Zhang J, Wang X, Su CY. Chem. Mater. 2009; 21: 557
    • 4a Chabre YM, Papadopoulos A, Arnold AA, Roy R. Beilstein J. Org. Chem. 2014; 10: 1524
    • 4b Gutièrrez-Abad R, Illa O, Ortuño RM. Org. Lett. 2010; 12: 3148
    • 4c Pérez EM, Illescas BM, Herranz MA, Martin N. New J. Chem. 2009; 33: 228
    • 5a Jana A, Paikar A, Bera S, Maity S, Haldar D. Org. Lett. 2014; 16: 38
    • 5b Prabhu DD, Sivadas AP, Das S. J. Mater. Chem. C 2014; 2: 7039
    • 5c Huang H, Fu Q, Zhuang S, Liu Y, Wang L, Chen J, Ma D, Yang C. J. Phys. Chem. C 2011; 115: 4872
    • 5d García-Frutos EM, Omenat A, Barberá J, Serrano JL, Gómez-Lor B. J. Mater. Chem. 2011; 21: 6831
    • 5e Ryu MH, Choi JW, Kim HJ, Park N, Cho BK. Angew. Chem. Int. Ed. 2011; 123: 5855
    • 5f Yelamaggad CV, Achalkumar AS, Rao DS. S, Prasad SK. J. Org. Chem. 2009; 74: 3168
    • 6a Bharadwaj VK, Sharma H, Kaur N, Singh N. New J. Chem. 2013; 37: 4192
    • 6b Turner DR, Paterson MJ, Steed JW. ­J. Org. Chem. 2006; 71: 1598
    • 6c Kim J, Kim SG, Seong HR, Ahn KH. J. Org. Chem. 2005; 70: 7227
    • 6d Ihm H, Yun S, Kim HG, Kim JK, Kim KS. Org. Lett. 2002; 4: 2897
    • 7a Jin Z. Nat. Prod. Rep. 2013; 30: 869
    • 7b Wright AE, Botelho JC, Guzmán E, Harmody D, Linley P, McCarthy PJ, Pitts TP, Pomponi SA, Reed JK. J. Nat. Prod. 2007; 70: 412
    • 7c Pingali H, Jain M, Shah S, Patil P, Makadia P, Zaware P, Sairam KV. V. M, Jamili J, Goel A, Patel M, Patel P. Bioorg. Med. Chem. Lett. 2008; 18: 6471
    • 7d Makadia P, Shah SR, Pingali H, Zaware P, Patel D, Pola S, Thube B, Priyadarshini P, Suthar D, Shah M, Giri S, Trivedi C, Jain M, Patel P, Bahekar R. Bioorg. Med. Chem. 2011; 19: 771
    • 8a Vila-Vicosa D, Francesconi O, Machuqueiro M. Beilstein J. Org. Chem. 2014; 10: 1513
    • 8b Koch N, Mazik M. Synthesis 2013; 45: 3341
    • 8c Ingale SA, Seela F. J. Org. Chem. 2012; 77: 9352
    • 8d Tanabe K, Suzui Y, Hasegawa M, Kato T. J. Am. Chem. Soc. 2012; 134: 5652
    • 8e Singh N, Jang DO. Org. Lett. 2007; 9: 1991
  • 9 For the only previous report on rigid C 3-symmetric oxazoles, see: Kotha S, Shah VR. Synthesis 2007; 23: 3653
    • 10a Mahuteau-Betzer F, Piguel S. Tetrahedron Lett. 2013; 54: 3188
    • 10b Silva DL, De Boni L, Correa DS, Costa SC. S, Hidalgo AA, Zilio SC, Canuto S, Mendonca CR. Opt. Mater. 2012; 34: 1013
    • 10c Park HJ, Lim CS, Kim ES, Han JH, Lee TH, Chun HJ, Cho BR. Angew. Chem. Int. Ed. 2012; 51: 2673
    • 10d Krishnamurthy NV, Reddy AR, Bhudevi B. J. Fluoresc. 2008; 18: 29
    • 11a Yeung MC. L, Yam VW. W. Chem. Soc. Rev. 2015; 44: 4192
    • 11b Cotruvo JA. Jr, Aron AT, Ramos-Torres KM, Chang CJ. Chem. Soc. Rev. 2015; 44: 4400
    • 11c Carter KP, Young AM, Palmer AE. Chem. Rev. 2014; 114: 4564
    • 11d Domaille DW, Que EL, Chang CJ. Nat. Chem. Biol. 2008; 4: 168
    • 12a Vyas TA. Ph.D. Dissertation. The M. S. University of Baroda; India: 2004
    • 12b Mehta G, Panda G, Shah SR, Kunwar AC. J. Chem. Soc., Perkin Trans. 1 1997; 2269
    • 12c Mehta G, Shah SR, Ravikumar K. J. Chem. Soc., Chem. Commun. 1993; 1006
    • 12d Mehta G, Shah SR. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1993; 32: 774
    • 13a Jadav P, Bahekar R, Shah SR, Patel D, Joharapurkar A, Jain M, Sairam KV. V. M, Singh P. Bioorg. Med. Chem. Lett. 2014; 24: 1918
    • 13b Patel D, Jain M, Shah SR, Bahekar R, Jadav P, Shah K, Joharapurkar A, Shaikh M, Sairam KV. V. M. Med. Chem. 2013; 9: 660
    • 13c Jadav P, Bahekar R, Shah SR, Patel D, Joharapurkar A, Samadhan K, Jain M, Shaikh M, Sairam KV. V. M. Bioorg. Med. Chem. Lett. 2012; 22: 3516
  • 14 Shah SR, Navathe SS, Dikundwar AG, Guru Row TN, Vasella AT. Eur. J. Org. Chem. 2013; 264
    • 15a Bray DJ, Lindoy LF, McMurtrie JC. Acta. Crystallogr., Sect. E 2004; 60: 6
    • 15b Samy AN, Alexander V. Dalton Trans. 2011; 40: 8630
    • 15c Cheng F, Chen J, Wang F, Tang N, Chen L. Z. Anorg. Allg. Chem. 2011; 637: 766
  • 16 van der Made AW, van der Made RH. J. Org. Chem. 1993; 58: 1262
  • 17 See the Supporting Information for further details.
  • 18 1,3,5-Tris[(2-formyl-6-methoxy)phenyloxymethyl)-2,4,6-trimethylbenzene (2e); Typical Procedure To a stirred solution of a 2-hydroxy-3-methoxybenzaldehyde (0.23 g, 1.5 mmol) in acetone was added K2CO3 (0.62 g, 4.5 mmol) followed by 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene (1) (0.2 g, 0.5 mmol). The resulting mixture was stirred at r.t. for 3 h. On completion of the reaction (TLC), the acetone was evaporated to a small volume followed by the addition of cold H2O. The solid thus obtained was filtered and recrystallized from EtOH to give pure tris-aromatic aldehyde 2e. Yield: 0.18 g (70%); white solid; mp 208 °C. IR (KBr): 2841, 1693, 1583, 1481, 1359, 1265, 1249, 1209 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.45 (s, 9 H, –CH3), 3.96 (s, 9 H, –OCH3), 5.45 (s, 6 H, –OCH2–), 7.12–7.20 (m, 6 H), 7.39 (dd, J 1 = 7.2 Hz, J2 = 2.0 Hz, 3 H), 10.15 (s, 3 H, –CHO). 13C NMR (100 MHz, CDCl3): δ = 16.0 (–CH3), 56.0 (–OCH3), 77.0 (–OCH2), 118.1, 119.0, 123.2, 129.9, 132.1, 140.3, 151.4, 153.6, 190.9 (–CHO). Anal. Calcd for C36H36O9: C, 70.57; H, 5.92. Found: C, 69.91; H, 6.79.
  • 19 van Leusen AM, Hoogenboom BE, Siderius H. Tetrahedron Lett. 1972; 2369
  • 20 1,3,5-Tris[6-methoxy-2-(1,3-oxazol-5-yl)phenyloxymethyl]-2,4,6-trimethylbenzene (3e); Typical Procedure To a two-necked round-bottomed flask were added tris-aldehyde 2e (0.1 g, 0.16 mmol), p-toluenesulfonylmethyl isocyanide (TosMIC) (0.13 g, 0.65 mmol), K2CO3 (0.16 g, 1.2 mmol) and MeOH. The resulting mixture was heated at reflux temperature for 3–4 h. On completion of the reaction (TLC), the MeOH was evaporated under reduced pressure and the residue was purified by column chromatography on silica (EtOAc–hexanes, 6:4 to 8:2) to give the corresponding tris-1,3-oxazole 3e. Yield: 0.07 g (60%); white solid; mp 210 °C. IR (KBr): 2939, 2834, 1589, 1560, 1503, 1471, 1265 cm–1. 1H NMR (100 MHz, CDCl3): δ = 2.45 (s, 9 H, –CH3), 3.94 (s, 9 H, –OCH3), 5.31 (s, 6 H, –OCH2–), 6.97 (dd, J 1 = 8.2 Hz, J 2 = 1.2 Hz, 3 H), 7.13 (t, J = 8.0 Hz, 3 H), 7.30 (s, 3 H, oxazole H), 7.35 (dd, J 1 = 8.2 Hz, J 2 = 1.2 Hz, 3 H), 7.87 (s, 3 H, –N=CH–, oxazole H). 13C NMR (100 MHz, CDCl3): δ = 16.1 (–CH3), 55.9 (–OCH3), 70.0 (–OCH2), 112.4, 118.2, 122.1, 123.9, 125.7, 132.5, 139.5, 145.1, 153.1. HRMS (Q-TOF MS ES+): m/z [M]+ calcd for C42H39N3O9: 729.2686; found: 729.2677.
  • 21 Crystal data for compound 3a (CCDC 1403715): C39H33N3O6 (M = 639.68): triclinic space group P-1 (no. 2), a = 11.0751(12) Å, b = 11.1638(12) Å, c = 13.9139(15) Å, α = 100.558(2)°, β = 108.883(2)°, γ = 98.899(2)°, V = 1557.3(3) Å3, Z = 2, T = 294.15 K, μ(MoKα) = 0.093 mm–1, Dcalc  = 1.364 g/mm3, 18425 reflections measured (3.2 ≤ 2θ ≤ 56.1), 7290 unique (R int = 0.0235) which were used in all calculations. The final R 1 was 0.0659 [>2σ(I)] and wR 2 was 0.1933 (all data).
  • 22 For similar coupling under microwave conditions, see: Besselievre F, Mahuteau-Betzer F, Grierson DS, Piguel S. J. Org. Chem. 2008; 73: 3278
  • 23 1,3,5-Tris[4-(2-phenyl-1,3-oxazol-5-yl)phenyloxymethyl]-2,4,6-trimethylbenzene (4) To a two-necked round-bottomed flask were added compound 3a (0.1 g, 0.19 mmol), bromobenzene (0.14 g, 0.86 mmol), K2CO3 (1.6 g, 1.15 mmol), Pd(OAc)2 (6 mg, 15 mol%), CuI (0.10 g, 0.57 mmol) and DMF (4 mL). The resulting mixture was degassed and then heated to 150 °C and stirred under an N2 atm for 3 h. On completion of the reaction (TLC), the solids were removed by filtration through Celite® followed by washing with CH2Cl2. The filtrate and washings were evaporated under vacuum and the residue purified by column chromatography on silica (EtOAc–hexanes, 3:7) to afford tris(2-phenyl-1,3-oxazol-5-yl) 4. Yield: 0.05 g (35%); white solid; mp: 187 °C. IR (KBr): 2923, 1612, 1499, 1242, 1176 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.52 (s, 9 H, –CH3), 5.20 (s, 6 H, –OCH2–), 7.13 (d, J = 8.8 Hz, 6 H), 7.37 (s, 3 H, oxazole H), 7.50 (d, J = 7.6 Hz, 9 H), 7.72 (d, J  = 9.2 Hz, 6 H), 8.12 (dd, J 1 = 7.8 Hz, J 2 = 2.0 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 16.0 (–CH3), 65.1 (–OCH2), 115.1, 121.2, 122.1, 125.8, 126.1, 127.5, 128.8, 130.1, 131.6, 139.5, 151.2 and 159.3 (oxazole carbons), 160.6 (Ar–O–). HRMS (Q-TOF MS ES+): m/z [M + H]+ calcd for C57H46N3O6: 868.3387; found: 868.2813; m/z [M + Na]+ calcd for C57H45N3O6Na: 890.3206; found: 890.2594.